Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbididc | GIF version |
Description: Disjunction distributes over the biconditional, for a decidable proposition. Based on an axiom of system DS in Vladimir Lifschitz, "On calculational proofs" (1998), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3384. (Contributed by Jim Kingdon, 2-Apr-2018.) |
Ref | Expression |
---|---|
orbididc | ⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orimdidc 896 | . . 3 ⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)))) | |
2 | orimdidc 896 | . . 3 ⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜒 → 𝜓)) ↔ ((𝜑 ∨ 𝜒) → (𝜑 ∨ 𝜓)))) | |
3 | 1, 2 | anbi12d 465 | . 2 ⊢ (DECID 𝜑 → (((𝜑 ∨ (𝜓 → 𝜒)) ∧ (𝜑 ∨ (𝜒 → 𝜓))) ↔ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) ∧ ((𝜑 ∨ 𝜒) → (𝜑 ∨ 𝜓))))) |
4 | dfbi2 386 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) ↔ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) | |
5 | 4 | orbi2i 752 | . . 3 ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ (𝜑 ∨ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓)))) |
6 | ordi 806 | . . 3 ⊢ ((𝜑 ∨ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) ↔ ((𝜑 ∨ (𝜓 → 𝜒)) ∧ (𝜑 ∨ (𝜒 → 𝜓)))) | |
7 | 5, 6 | bitri 183 | . 2 ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ (𝜓 → 𝜒)) ∧ (𝜑 ∨ (𝜒 → 𝜓)))) |
8 | dfbi2 386 | . 2 ⊢ (((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒)) ↔ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) ∧ ((𝜑 ∨ 𝜒) → (𝜑 ∨ 𝜓)))) | |
9 | 3, 7, 8 | 3bitr4g 222 | 1 ⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: pm5.7dc 944 |
Copyright terms: Public domain | W3C validator |