| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbididc | GIF version | ||
| Description: Disjunction distributes over the biconditional, for a decidable proposition. Based on an axiom of system DS in Vladimir Lifschitz, "On calculational proofs" (1998), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3384. (Contributed by Jim Kingdon, 2-Apr-2018.) |
| Ref | Expression |
|---|---|
| orbididc | ⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orimdidc 907 | . . 3 ⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)))) | |
| 2 | orimdidc 907 | . . 3 ⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜒 → 𝜓)) ↔ ((𝜑 ∨ 𝜒) → (𝜑 ∨ 𝜓)))) | |
| 3 | 1, 2 | anbi12d 473 | . 2 ⊢ (DECID 𝜑 → (((𝜑 ∨ (𝜓 → 𝜒)) ∧ (𝜑 ∨ (𝜒 → 𝜓))) ↔ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) ∧ ((𝜑 ∨ 𝜒) → (𝜑 ∨ 𝜓))))) |
| 4 | dfbi2 388 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) ↔ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) | |
| 5 | 4 | orbi2i 763 | . . 3 ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ (𝜑 ∨ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓)))) |
| 6 | ordi 817 | . . 3 ⊢ ((𝜑 ∨ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) ↔ ((𝜑 ∨ (𝜓 → 𝜒)) ∧ (𝜑 ∨ (𝜒 → 𝜓)))) | |
| 7 | 5, 6 | bitri 184 | . 2 ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ (𝜓 → 𝜒)) ∧ (𝜑 ∨ (𝜒 → 𝜓)))) |
| 8 | dfbi2 388 | . 2 ⊢ (((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒)) ↔ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) ∧ ((𝜑 ∨ 𝜒) → (𝜑 ∨ 𝜓)))) | |
| 9 | 3, 7, 8 | 3bitr4g 223 | 1 ⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: pm5.7dc 956 |
| Copyright terms: Public domain | W3C validator |