ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgdirlem GIF version

Theorem mulgdirlem 13656
Description: Lemma for mulgdir 13657. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgdirlem ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgdirlem
StepHypRef Expression
1 simpl1 1005 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
21grpmndd 13512 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
3 simprl 529 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
4 simprr 531 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
5 simpl23 1082 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
6 mulgnndir.b . . . . . 6 𝐵 = (Base‘𝐺)
7 mulgnndir.t . . . . . 6 · = (.g𝐺)
8 mulgnndir.p . . . . . 6 + = (+g𝐺)
96, 7, 8mulgnn0dir 13655 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
102, 3, 4, 5, 9syl13anc 1254 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
1110anassrs 400 . . 3 ((((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
12 simpl1 1005 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
13 simp22 1036 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℤ)
1413adantr 276 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℤ)
15 simpl23 1082 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
16 eqid 2209 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
176, 7, 16mulgneg 13643 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
1812, 14, 15, 17syl3anc 1252 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
1918oveq1d 5989 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑁 · 𝑋) + (𝑁 · 𝑋)) = (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)))
206, 7mulgcl 13642 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
2112, 14, 15, 20syl3anc 1252 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑁 · 𝑋) ∈ 𝐵)
22 eqid 2209 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
236, 8, 22, 16grplinv 13549 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (0g𝐺))
2412, 21, 23syl2anc 411 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (0g𝐺))
2519, 24eqtrd 2242 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑁 · 𝑋) + (𝑁 · 𝑋)) = (0g𝐺))
2625oveq2d 5990 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)))
27 simpl3 1007 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0)
28 nn0z 9434 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ ℕ0 → (𝑀 + 𝑁) ∈ ℤ)
2927, 28syl 14 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℤ)
306, 7mulgcl 13642 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
3112, 29, 15, 30syl3anc 1252 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
326, 8, 22grprid 13531 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)) = ((𝑀 + 𝑁) · 𝑋))
3312, 31, 32syl2anc 411 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)) = ((𝑀 + 𝑁) · 𝑋))
3426, 33eqtrd 2242 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
35 nn0z 9434 . . . . . . . . 9 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
3635ad2antll 491 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
376, 7mulgcl 13642 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
3812, 36, 15, 37syl3anc 1252 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) ∈ 𝐵)
396, 8grpass 13508 . . . . . . 7 ((𝐺 ∈ Grp ∧ (((𝑀 + 𝑁) · 𝑋) ∈ 𝐵 ∧ (-𝑁 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))))
4012, 31, 38, 21, 39syl13anc 1254 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))))
4112grpmndd 13512 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
42 simprr 531 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
436, 7, 8mulgnn0dir 13655 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)))
4441, 27, 42, 15, 43syl13anc 1254 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)))
45 simp21 1035 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℤ)
4645zcnd 9538 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℂ)
4713zcnd 9538 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℂ)
4846, 47addcld 8134 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
4948adantr 276 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℂ)
5047adantr 276 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
5149, 50negsubd 8431 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) + -𝑁) = ((𝑀 + 𝑁) − 𝑁))
5246adantr 276 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℂ)
5352, 50pncand 8426 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
5451, 53eqtrd 2242 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) + -𝑁) = 𝑀)
5554oveq1d 5989 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (𝑀 · 𝑋))
5644, 55eqtr3d 2244 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) = (𝑀 · 𝑋))
5756oveq1d 5989 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5840, 57eqtr3d 2244 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5934, 58eqtr3d 2244 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6059anassrs 400 . . 3 ((((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) ∧ -𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
61 elznn0 9429 . . . . . 6 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
6261simprbi 275 . . . . 5 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6313, 62syl 14 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6463adantr 276 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6511, 60, 64mpjaodan 802 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
66 simpl1 1005 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ Grp)
6745adantr 276 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
68 simpl23 1082 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑋𝐵)
696, 7mulgcl 13642 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
7066, 67, 68, 69syl3anc 1252 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 · 𝑋) ∈ 𝐵)
7167znegcld 9539 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℤ)
726, 7mulgcl 13642 . . . . 5 ((𝐺 ∈ Grp ∧ -𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) ∈ 𝐵)
7366, 71, 68, 72syl3anc 1252 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · 𝑋) ∈ 𝐵)
74283ad2ant3 1025 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
7574adantr 276 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
7666, 75, 68, 30syl3anc 1252 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
776, 8grpass 13508 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) ∈ 𝐵 ∧ (-𝑀 · 𝑋) ∈ 𝐵 ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))))
7866, 70, 73, 76, 77syl13anc 1254 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))))
796, 7, 16mulgneg 13643 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
8066, 67, 68, 79syl3anc 1252 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
8180oveq2d 5990 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (-𝑀 · 𝑋)) = ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))))
826, 8, 22, 16grprinv 13550 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))) = (0g𝐺))
8366, 70, 82syl2anc 411 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))) = (0g𝐺))
8481, 83eqtrd 2242 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (-𝑀 · 𝑋)) = (0g𝐺))
8584oveq1d 5989 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)))
866, 8, 22grplid 13530 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8766, 76, 86syl2anc 411 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8885, 87eqtrd 2242 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8966grpmndd 13512 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ Mnd)
90 simpr 110 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
91 simpl3 1007 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
926, 7, 8mulgnn0dir 13655 . . . . . 6 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0 ∧ (𝑀 + 𝑁) ∈ ℕ0𝑋𝐵)) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)))
9389, 90, 91, 68, 92syl13anc 1254 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)))
9446adantr 276 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
9594negcld 8412 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℂ)
9648adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
9795, 96addcomd 8265 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 + (𝑀 + 𝑁)) = ((𝑀 + 𝑁) + -𝑀))
9896, 94negsubd 8431 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = ((𝑀 + 𝑁) − 𝑀))
9947adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
10094, 99pncan2d 8427 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
10197, 98, 1003eqtrd 2246 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 + (𝑀 + 𝑁)) = 𝑁)
102101oveq1d 5989 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = (𝑁 · 𝑋))
10393, 102eqtr3d 2244 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)) = (𝑁 · 𝑋))
104103oveq2d 5990 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
10578, 88, 1043eqtr3d 2250 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
106 elznn0 9429 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
107106simprbi 275 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
10845, 107syl 14 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
10965, 105, 108mpjaodan 802 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 712  w3a 983   = wceq 1375  wcel 2180  cfv 5294  (class class class)co 5974  cc 7965  cr 7966   + caddc 7970  cmin 8285  -cneg 8286  0cn0 9337  cz 9414  Basecbs 12998  +gcplusg 13076  0gc0g 13255  Mndcmnd 13415  Grpcgrp 13499  invgcminusg 13500  .gcmg 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-seqfrec 10637  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-mulg 13623
This theorem is referenced by:  mulgdir  13657
  Copyright terms: Public domain W3C validator