ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgdirlem GIF version

Theorem mulgdirlem 13226
Description: Lemma for mulgdir 13227. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgdirlem ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgdirlem
StepHypRef Expression
1 simpl1 1002 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
21grpmndd 13088 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
3 simprl 529 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
4 simprr 531 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
5 simpl23 1079 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
6 mulgnndir.b . . . . . 6 𝐵 = (Base‘𝐺)
7 mulgnndir.t . . . . . 6 · = (.g𝐺)
8 mulgnndir.p . . . . . 6 + = (+g𝐺)
96, 7, 8mulgnn0dir 13225 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
102, 3, 4, 5, 9syl13anc 1251 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
1110anassrs 400 . . 3 ((((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
12 simpl1 1002 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
13 simp22 1033 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℤ)
1413adantr 276 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℤ)
15 simpl23 1079 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
16 eqid 2193 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
176, 7, 16mulgneg 13213 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
1812, 14, 15, 17syl3anc 1249 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
1918oveq1d 5934 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑁 · 𝑋) + (𝑁 · 𝑋)) = (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)))
206, 7mulgcl 13212 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
2112, 14, 15, 20syl3anc 1249 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑁 · 𝑋) ∈ 𝐵)
22 eqid 2193 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
236, 8, 22, 16grplinv 13125 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (0g𝐺))
2412, 21, 23syl2anc 411 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (0g𝐺))
2519, 24eqtrd 2226 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑁 · 𝑋) + (𝑁 · 𝑋)) = (0g𝐺))
2625oveq2d 5935 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)))
27 simpl3 1004 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0)
28 nn0z 9340 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ ℕ0 → (𝑀 + 𝑁) ∈ ℤ)
2927, 28syl 14 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℤ)
306, 7mulgcl 13212 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
3112, 29, 15, 30syl3anc 1249 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
326, 8, 22grprid 13107 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)) = ((𝑀 + 𝑁) · 𝑋))
3312, 31, 32syl2anc 411 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)) = ((𝑀 + 𝑁) · 𝑋))
3426, 33eqtrd 2226 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
35 nn0z 9340 . . . . . . . . 9 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
3635ad2antll 491 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
376, 7mulgcl 13212 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
3812, 36, 15, 37syl3anc 1249 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) ∈ 𝐵)
396, 8grpass 13084 . . . . . . 7 ((𝐺 ∈ Grp ∧ (((𝑀 + 𝑁) · 𝑋) ∈ 𝐵 ∧ (-𝑁 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))))
4012, 31, 38, 21, 39syl13anc 1251 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))))
4112grpmndd 13088 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
42 simprr 531 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
436, 7, 8mulgnn0dir 13225 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)))
4441, 27, 42, 15, 43syl13anc 1251 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)))
45 simp21 1032 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℤ)
4645zcnd 9443 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℂ)
4713zcnd 9443 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℂ)
4846, 47addcld 8041 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
4948adantr 276 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℂ)
5047adantr 276 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
5149, 50negsubd 8338 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) + -𝑁) = ((𝑀 + 𝑁) − 𝑁))
5246adantr 276 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℂ)
5352, 50pncand 8333 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
5451, 53eqtrd 2226 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) + -𝑁) = 𝑀)
5554oveq1d 5934 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (𝑀 · 𝑋))
5644, 55eqtr3d 2228 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) = (𝑀 · 𝑋))
5756oveq1d 5934 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5840, 57eqtr3d 2228 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5934, 58eqtr3d 2228 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6059anassrs 400 . . 3 ((((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) ∧ -𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
61 elznn0 9335 . . . . . 6 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
6261simprbi 275 . . . . 5 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6313, 62syl 14 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6463adantr 276 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6511, 60, 64mpjaodan 799 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
66 simpl1 1002 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ Grp)
6745adantr 276 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
68 simpl23 1079 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑋𝐵)
696, 7mulgcl 13212 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
7066, 67, 68, 69syl3anc 1249 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 · 𝑋) ∈ 𝐵)
7167znegcld 9444 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℤ)
726, 7mulgcl 13212 . . . . 5 ((𝐺 ∈ Grp ∧ -𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) ∈ 𝐵)
7366, 71, 68, 72syl3anc 1249 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · 𝑋) ∈ 𝐵)
74283ad2ant3 1022 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
7574adantr 276 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
7666, 75, 68, 30syl3anc 1249 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
776, 8grpass 13084 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) ∈ 𝐵 ∧ (-𝑀 · 𝑋) ∈ 𝐵 ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))))
7866, 70, 73, 76, 77syl13anc 1251 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))))
796, 7, 16mulgneg 13213 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
8066, 67, 68, 79syl3anc 1249 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
8180oveq2d 5935 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (-𝑀 · 𝑋)) = ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))))
826, 8, 22, 16grprinv 13126 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))) = (0g𝐺))
8366, 70, 82syl2anc 411 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))) = (0g𝐺))
8481, 83eqtrd 2226 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (-𝑀 · 𝑋)) = (0g𝐺))
8584oveq1d 5934 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)))
866, 8, 22grplid 13106 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8766, 76, 86syl2anc 411 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8885, 87eqtrd 2226 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8966grpmndd 13088 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ Mnd)
90 simpr 110 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
91 simpl3 1004 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
926, 7, 8mulgnn0dir 13225 . . . . . 6 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0 ∧ (𝑀 + 𝑁) ∈ ℕ0𝑋𝐵)) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)))
9389, 90, 91, 68, 92syl13anc 1251 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)))
9446adantr 276 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
9594negcld 8319 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℂ)
9648adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
9795, 96addcomd 8172 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 + (𝑀 + 𝑁)) = ((𝑀 + 𝑁) + -𝑀))
9896, 94negsubd 8338 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = ((𝑀 + 𝑁) − 𝑀))
9947adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
10094, 99pncan2d 8334 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
10197, 98, 1003eqtrd 2230 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 + (𝑀 + 𝑁)) = 𝑁)
102101oveq1d 5934 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = (𝑁 · 𝑋))
10393, 102eqtr3d 2228 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)) = (𝑁 · 𝑋))
104103oveq2d 5935 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
10578, 88, 1043eqtr3d 2234 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
106 elznn0 9335 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
107106simprbi 275 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
10845, 107syl 14 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
10965, 105, 108mpjaodan 799 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  cc 7872  cr 7873   + caddc 7877  cmin 8192  -cneg 8193  0cn0 9243  cz 9320  Basecbs 12621  +gcplusg 12698  0gc0g 12870  Mndcmnd 13000  Grpcgrp 13075  invgcminusg 13076  .gcmg 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-mulg 13193
This theorem is referenced by:  mulgdir  13227
  Copyright terms: Public domain W3C validator