ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem5 GIF version

Theorem prarloclem5 7687
Description: A substitution of zero for 𝑦 and 𝑁 minus two for 𝑥. Lemma for prarloc 7690. (Contributed by Jim Kingdon, 4-Nov-2019.)
Assertion
Ref Expression
prarloclem5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐿,𝑦   𝑥,𝑁   𝑥,𝑃,𝑦   𝑥,𝑈,𝑦
Allowed substitution hint:   𝑁(𝑦)

Proof of Theorem prarloclem5
StepHypRef Expression
1 prarloclemn 7686 . . . 4 ((𝑁N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
213adant2 1040 . . 3 ((𝑁N𝑃Q ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
323ad2ant2 1043 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
4 elprnql 7668 . . . . . . 7 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) → 𝐴Q)
543ad2ant1 1042 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴Q)
6 simp22 1055 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝑃Q)
7 nqnq0 7628 . . . . . . . . 9 QQ0
87sseli 3220 . . . . . . . 8 (𝐴Q𝐴Q0)
9 nq0a0 7644 . . . . . . . 8 (𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)
108, 9syl 14 . . . . . . 7 (𝐴Q → (𝐴 +Q0 0Q0) = 𝐴)
117sseli 3220 . . . . . . . . . 10 (𝑃Q𝑃Q0)
12 nq0m0r 7643 . . . . . . . . . 10 (𝑃Q0 → (0Q0 ·Q0 𝑃) = 0Q0)
1311, 12syl 14 . . . . . . . . 9 (𝑃Q → (0Q0 ·Q0 𝑃) = 0Q0)
14 df-0nq0 7613 . . . . . . . . . 10 0Q0 = [⟨∅, 1o⟩] ~Q0
1514oveq1i 6011 . . . . . . . . 9 (0Q0 ·Q0 𝑃) = ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)
1613, 15eqtr3di 2277 . . . . . . . 8 (𝑃Q → 0Q0 = ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃))
1716oveq2d 6017 . . . . . . 7 (𝑃Q → (𝐴 +Q0 0Q0) = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
1810, 17sylan9req 2283 . . . . . 6 ((𝐴Q𝑃Q) → 𝐴 = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
195, 6, 18syl2anc 411 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴 = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
20 simp1r 1046 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴𝐿)
2119, 20eqeltrrd 2307 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿)
22 2onn 6667 . . . . . . . . . . . . . . 15 2o ∈ ω
23 nna0r 6624 . . . . . . . . . . . . . . 15 (2o ∈ ω → (∅ +o 2o) = 2o)
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (∅ +o 2o) = 2o
2524oveq1i 6011 . . . . . . . . . . . . 13 ((∅ +o 2o) +o 𝑥) = (2o +o 𝑥)
2625eqeq1i 2237 . . . . . . . . . . . 12 (((∅ +o 2o) +o 𝑥) = 𝑁 ↔ (2o +o 𝑥) = 𝑁)
2726biimpri 133 . . . . . . . . . . 11 ((2o +o 𝑥) = 𝑁 → ((∅ +o 2o) +o 𝑥) = 𝑁)
2827opeq1d 3863 . . . . . . . . . 10 ((2o +o 𝑥) = 𝑁 → ⟨((∅ +o 2o) +o 𝑥), 1o⟩ = ⟨𝑁, 1o⟩)
2928eceq1d 6716 . . . . . . . . 9 ((2o +o 𝑥) = 𝑁 → [⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨𝑁, 1o⟩] ~Q )
3029oveq1d 6016 . . . . . . . 8 ((2o +o 𝑥) = 𝑁 → ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃))
3130oveq2d 6017 . . . . . . 7 ((2o +o 𝑥) = 𝑁 → (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)))
3231eleq1d 2298 . . . . . 6 ((2o +o 𝑥) = 𝑁 → ((𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
3332biimprcd 160 . . . . 5 ((𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 → ((2o +o 𝑥) = 𝑁 → (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
34333ad2ant3 1044 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ((2o +o 𝑥) = 𝑁 → (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
35 peano1 4686 . . . . 5 ∅ ∈ ω
36 opeq1 3857 . . . . . . . . . . 11 (𝑦 = ∅ → ⟨𝑦, 1o⟩ = ⟨∅, 1o⟩)
3736eceq1d 6716 . . . . . . . . . 10 (𝑦 = ∅ → [⟨𝑦, 1o⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 )
3837oveq1d 6016 . . . . . . . . 9 (𝑦 = ∅ → ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃) = ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃))
3938oveq2d 6017 . . . . . . . 8 (𝑦 = ∅ → (𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
4039eleq1d 2298 . . . . . . 7 (𝑦 = ∅ → ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
41 oveq1 6008 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑦 +o 2o) = (∅ +o 2o))
4241oveq1d 6016 . . . . . . . . . . . 12 (𝑦 = ∅ → ((𝑦 +o 2o) +o 𝑥) = ((∅ +o 2o) +o 𝑥))
4342opeq1d 3863 . . . . . . . . . . 11 (𝑦 = ∅ → ⟨((𝑦 +o 2o) +o 𝑥), 1o⟩ = ⟨((∅ +o 2o) +o 𝑥), 1o⟩)
4443eceq1d 6716 . . . . . . . . . 10 (𝑦 = ∅ → [⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q )
4544oveq1d 6016 . . . . . . . . 9 (𝑦 = ∅ → ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃))
4645oveq2d 6017 . . . . . . . 8 (𝑦 = ∅ → (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)))
4746eleq1d 2298 . . . . . . 7 (𝑦 = ∅ → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
4840, 47anbi12d 473 . . . . . 6 (𝑦 = ∅ → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
4948rspcev 2907 . . . . 5 ((∅ ∈ ω ∧ ((𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
5035, 49mpan 424 . . . 4 (((𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
5121, 34, 50syl6an 1476 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ((2o +o 𝑥) = 𝑁 → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
5251reximdv 2631 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → (∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁 → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
533, 52mpd 13 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wrex 2509  c0 3491  cop 3669   class class class wbr 4083  ωcom 4682  (class class class)co 6001  1oc1o 6555  2oc2o 6556   +o coa 6559  [cec 6678  Ncnpi 7459   <N clti 7462   ~Q ceq 7466  Qcnq 7467   +Q cplq 7469   ·Q cmq 7470   ~Q0 ceq0 7473  Q0cnq0 7474  0Q0c0q0 7475   +Q0 cplq0 7476   ·Q0 cmq0 7477  Pcnp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-mi 7493  df-lti 7494  df-enq 7534  df-nqqs 7535  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653
This theorem is referenced by:  prarloclem  7688
  Copyright terms: Public domain W3C validator