Proof of Theorem prarloclem5
Step | Hyp | Ref
| Expression |
1 | | prarloclemn 7461 |
. . . 4
⊢ ((𝑁 ∈ N ∧
1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o
𝑥) = 𝑁) |
2 | 1 | 3adant2 1011 |
. . 3
⊢ ((𝑁 ∈ N ∧
𝑃 ∈ Q
∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o
𝑥) = 𝑁) |
3 | 2 | 3ad2ant2 1014 |
. 2
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω (2o +o
𝑥) = 𝑁) |
4 | | elprnql 7443 |
. . . . . . 7
⊢
((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) → 𝐴 ∈ Q) |
5 | 4 | 3ad2ant1 1013 |
. . . . . 6
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴 ∈ Q) |
6 | | simp22 1026 |
. . . . . 6
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → 𝑃 ∈ Q) |
7 | | nqnq0 7403 |
. . . . . . . . 9
⊢
Q ⊆ Q0 |
8 | 7 | sseli 3143 |
. . . . . . . 8
⊢ (𝐴 ∈ Q →
𝐴 ∈
Q0) |
9 | | nq0a0 7419 |
. . . . . . . 8
⊢ (𝐴 ∈
Q0 → (𝐴 +Q0
0Q0) = 𝐴) |
10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ (𝐴 ∈ Q →
(𝐴
+Q0 0Q0) = 𝐴) |
11 | 7 | sseli 3143 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Q →
𝑃 ∈
Q0) |
12 | | nq0m0r 7418 |
. . . . . . . . . 10
⊢ (𝑃 ∈
Q0 → (0Q0
·Q0 𝑃) =
0Q0) |
13 | 11, 12 | syl 14 |
. . . . . . . . 9
⊢ (𝑃 ∈ Q →
(0Q0 ·Q0 𝑃) =
0Q0) |
14 | | df-0nq0 7388 |
. . . . . . . . . 10
⊢
0Q0 = [〈∅, 1o〉]
~Q0 |
15 | 14 | oveq1i 5863 |
. . . . . . . . 9
⊢
(0Q0 ·Q0 𝑃) = ([〈∅,
1o〉] ~Q0
·Q0 𝑃) |
16 | 13, 15 | eqtr3di 2218 |
. . . . . . . 8
⊢ (𝑃 ∈ Q →
0Q0 = ([〈∅, 1o〉]
~Q0 ·Q0 𝑃)) |
17 | 16 | oveq2d 5869 |
. . . . . . 7
⊢ (𝑃 ∈ Q →
(𝐴
+Q0 0Q0) = (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃))) |
18 | 10, 17 | sylan9req 2224 |
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
𝑃 ∈ Q)
→ 𝐴 = (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃))) |
19 | 5, 6, 18 | syl2anc 409 |
. . . . 5
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴 = (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃))) |
20 | | simp1r 1017 |
. . . . 5
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴 ∈ 𝐿) |
21 | 19, 20 | eqeltrrd 2248 |
. . . 4
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿) |
22 | | 2onn 6500 |
. . . . . . . . . . . . . . 15
⊢
2o ∈ ω |
23 | | nna0r 6457 |
. . . . . . . . . . . . . . 15
⊢
(2o ∈ ω → (∅ +o
2o) = 2o) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (∅
+o 2o) = 2o |
25 | 24 | oveq1i 5863 |
. . . . . . . . . . . . 13
⊢ ((∅
+o 2o) +o 𝑥) = (2o +o 𝑥) |
26 | 25 | eqeq1i 2178 |
. . . . . . . . . . . 12
⊢
(((∅ +o 2o) +o 𝑥) = 𝑁 ↔ (2o +o 𝑥) = 𝑁) |
27 | 26 | biimpri 132 |
. . . . . . . . . . 11
⊢
((2o +o 𝑥) = 𝑁 → ((∅ +o
2o) +o 𝑥) = 𝑁) |
28 | 27 | opeq1d 3771 |
. . . . . . . . . 10
⊢
((2o +o 𝑥) = 𝑁 → 〈((∅ +o
2o) +o 𝑥), 1o〉 = 〈𝑁,
1o〉) |
29 | 28 | eceq1d 6549 |
. . . . . . . . 9
⊢
((2o +o 𝑥) = 𝑁 → [〈((∅ +o
2o) +o 𝑥), 1o〉]
~Q = [〈𝑁, 1o〉]
~Q ) |
30 | 29 | oveq1d 5868 |
. . . . . . . 8
⊢
((2o +o 𝑥) = 𝑁 → ([〈((∅ +o
2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃) = ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) |
31 | 30 | oveq2d 5869 |
. . . . . . 7
⊢
((2o +o 𝑥) = 𝑁 → (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) = (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃))) |
32 | 31 | eleq1d 2239 |
. . . . . 6
⊢
((2o +o 𝑥) = 𝑁 → ((𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈)) |
33 | 32 | biimprcd 159 |
. . . . 5
⊢ ((𝐴 +Q
([〈𝑁,
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈 → ((2o +o 𝑥) = 𝑁 → (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈)) |
34 | 33 | 3ad2ant3 1015 |
. . . 4
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → ((2o +o 𝑥) = 𝑁 → (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈)) |
35 | | peano1 4578 |
. . . . 5
⊢ ∅
∈ ω |
36 | | opeq1 3765 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → 〈𝑦, 1o〉 =
〈∅, 1o〉) |
37 | 36 | eceq1d 6549 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → [〈𝑦, 1o〉]
~Q0 = [〈∅, 1o〉]
~Q0 ) |
38 | 37 | oveq1d 5868 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃) = ([〈∅,
1o〉] ~Q0
·Q0 𝑃)) |
39 | 38 | oveq2d 5869 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝐴 +Q0
([〈𝑦,
1o〉] ~Q0
·Q0 𝑃)) = (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃))) |
40 | 39 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝐴 +Q0
([〈𝑦,
1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿)) |
41 | | oveq1 5860 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ∅ → (𝑦 +o 2o) =
(∅ +o 2o)) |
42 | 41 | oveq1d 5868 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∅ → ((𝑦 +o 2o)
+o 𝑥) =
((∅ +o 2o) +o 𝑥)) |
43 | 42 | opeq1d 3771 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → 〈((𝑦 +o 2o)
+o 𝑥),
1o〉 = 〈((∅ +o 2o)
+o 𝑥),
1o〉) |
44 | 43 | eceq1d 6549 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → [〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q = [〈((∅
+o 2o) +o 𝑥), 1o〉]
~Q ) |
45 | 44 | oveq1d 5868 |
. . . . . . . . 9
⊢ (𝑦 = ∅ →
([〈((𝑦 +o
2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃) = ([〈((∅
+o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) |
46 | 45 | oveq2d 5869 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝐴 +Q
([〈((𝑦 +o
2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) = (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃))) |
47 | 46 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝐴 +Q
([〈((𝑦 +o
2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈)) |
48 | 40, 47 | anbi12d 470 |
. . . . . 6
⊢ (𝑦 = ∅ → (((𝐴 +Q0
([〈𝑦,
1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈))) |
49 | 48 | rspcev 2834 |
. . . . 5
⊢ ((∅
∈ ω ∧ ((𝐴
+Q0 ([〈∅, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈)) |
50 | 35, 49 | mpan 422 |
. . . 4
⊢ (((𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈)) |
51 | 21, 34, 50 | syl6an 1427 |
. . 3
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → ((2o +o 𝑥) = 𝑁 → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈))) |
52 | 51 | reximdv 2571 |
. 2
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → (∃𝑥 ∈ ω (2o +o
𝑥) = 𝑁 → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈))) |
53 | 3, 52 | mpd 13 |
1
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈)) |