Proof of Theorem prarloclem5
| Step | Hyp | Ref
| Expression |
| 1 | | prarloclemn 7566 |
. . . 4
⊢ ((𝑁 ∈ N ∧
1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o
𝑥) = 𝑁) |
| 2 | 1 | 3adant2 1018 |
. . 3
⊢ ((𝑁 ∈ N ∧
𝑃 ∈ Q
∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o
𝑥) = 𝑁) |
| 3 | 2 | 3ad2ant2 1021 |
. 2
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω (2o +o
𝑥) = 𝑁) |
| 4 | | elprnql 7548 |
. . . . . . 7
⊢
((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) → 𝐴 ∈ Q) |
| 5 | 4 | 3ad2ant1 1020 |
. . . . . 6
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴 ∈ Q) |
| 6 | | simp22 1033 |
. . . . . 6
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → 𝑃 ∈ Q) |
| 7 | | nqnq0 7508 |
. . . . . . . . 9
⊢
Q ⊆ Q0 |
| 8 | 7 | sseli 3179 |
. . . . . . . 8
⊢ (𝐴 ∈ Q →
𝐴 ∈
Q0) |
| 9 | | nq0a0 7524 |
. . . . . . . 8
⊢ (𝐴 ∈
Q0 → (𝐴 +Q0
0Q0) = 𝐴) |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ (𝐴 ∈ Q →
(𝐴
+Q0 0Q0) = 𝐴) |
| 11 | 7 | sseli 3179 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Q →
𝑃 ∈
Q0) |
| 12 | | nq0m0r 7523 |
. . . . . . . . . 10
⊢ (𝑃 ∈
Q0 → (0Q0
·Q0 𝑃) =
0Q0) |
| 13 | 11, 12 | syl 14 |
. . . . . . . . 9
⊢ (𝑃 ∈ Q →
(0Q0 ·Q0 𝑃) =
0Q0) |
| 14 | | df-0nq0 7493 |
. . . . . . . . . 10
⊢
0Q0 = [〈∅, 1o〉]
~Q0 |
| 15 | 14 | oveq1i 5932 |
. . . . . . . . 9
⊢
(0Q0 ·Q0 𝑃) = ([〈∅,
1o〉] ~Q0
·Q0 𝑃) |
| 16 | 13, 15 | eqtr3di 2244 |
. . . . . . . 8
⊢ (𝑃 ∈ Q →
0Q0 = ([〈∅, 1o〉]
~Q0 ·Q0 𝑃)) |
| 17 | 16 | oveq2d 5938 |
. . . . . . 7
⊢ (𝑃 ∈ Q →
(𝐴
+Q0 0Q0) = (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃))) |
| 18 | 10, 17 | sylan9req 2250 |
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
𝑃 ∈ Q)
→ 𝐴 = (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃))) |
| 19 | 5, 6, 18 | syl2anc 411 |
. . . . 5
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴 = (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃))) |
| 20 | | simp1r 1024 |
. . . . 5
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴 ∈ 𝐿) |
| 21 | 19, 20 | eqeltrrd 2274 |
. . . 4
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿) |
| 22 | | 2onn 6579 |
. . . . . . . . . . . . . . 15
⊢
2o ∈ ω |
| 23 | | nna0r 6536 |
. . . . . . . . . . . . . . 15
⊢
(2o ∈ ω → (∅ +o
2o) = 2o) |
| 24 | 22, 23 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (∅
+o 2o) = 2o |
| 25 | 24 | oveq1i 5932 |
. . . . . . . . . . . . 13
⊢ ((∅
+o 2o) +o 𝑥) = (2o +o 𝑥) |
| 26 | 25 | eqeq1i 2204 |
. . . . . . . . . . . 12
⊢
(((∅ +o 2o) +o 𝑥) = 𝑁 ↔ (2o +o 𝑥) = 𝑁) |
| 27 | 26 | biimpri 133 |
. . . . . . . . . . 11
⊢
((2o +o 𝑥) = 𝑁 → ((∅ +o
2o) +o 𝑥) = 𝑁) |
| 28 | 27 | opeq1d 3814 |
. . . . . . . . . 10
⊢
((2o +o 𝑥) = 𝑁 → 〈((∅ +o
2o) +o 𝑥), 1o〉 = 〈𝑁,
1o〉) |
| 29 | 28 | eceq1d 6628 |
. . . . . . . . 9
⊢
((2o +o 𝑥) = 𝑁 → [〈((∅ +o
2o) +o 𝑥), 1o〉]
~Q = [〈𝑁, 1o〉]
~Q ) |
| 30 | 29 | oveq1d 5937 |
. . . . . . . 8
⊢
((2o +o 𝑥) = 𝑁 → ([〈((∅ +o
2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃) = ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) |
| 31 | 30 | oveq2d 5938 |
. . . . . . 7
⊢
((2o +o 𝑥) = 𝑁 → (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) = (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃))) |
| 32 | 31 | eleq1d 2265 |
. . . . . 6
⊢
((2o +o 𝑥) = 𝑁 → ((𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈)) |
| 33 | 32 | biimprcd 160 |
. . . . 5
⊢ ((𝐴 +Q
([〈𝑁,
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈 → ((2o +o 𝑥) = 𝑁 → (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈)) |
| 34 | 33 | 3ad2ant3 1022 |
. . . 4
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → ((2o +o 𝑥) = 𝑁 → (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈)) |
| 35 | | peano1 4630 |
. . . . 5
⊢ ∅
∈ ω |
| 36 | | opeq1 3808 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → 〈𝑦, 1o〉 =
〈∅, 1o〉) |
| 37 | 36 | eceq1d 6628 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → [〈𝑦, 1o〉]
~Q0 = [〈∅, 1o〉]
~Q0 ) |
| 38 | 37 | oveq1d 5937 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃) = ([〈∅,
1o〉] ~Q0
·Q0 𝑃)) |
| 39 | 38 | oveq2d 5938 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝐴 +Q0
([〈𝑦,
1o〉] ~Q0
·Q0 𝑃)) = (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃))) |
| 40 | 39 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝐴 +Q0
([〈𝑦,
1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿)) |
| 41 | | oveq1 5929 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ∅ → (𝑦 +o 2o) =
(∅ +o 2o)) |
| 42 | 41 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∅ → ((𝑦 +o 2o)
+o 𝑥) =
((∅ +o 2o) +o 𝑥)) |
| 43 | 42 | opeq1d 3814 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → 〈((𝑦 +o 2o)
+o 𝑥),
1o〉 = 〈((∅ +o 2o)
+o 𝑥),
1o〉) |
| 44 | 43 | eceq1d 6628 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → [〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q = [〈((∅
+o 2o) +o 𝑥), 1o〉]
~Q ) |
| 45 | 44 | oveq1d 5937 |
. . . . . . . . 9
⊢ (𝑦 = ∅ →
([〈((𝑦 +o
2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃) = ([〈((∅
+o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) |
| 46 | 45 | oveq2d 5938 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝐴 +Q
([〈((𝑦 +o
2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) = (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃))) |
| 47 | 46 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝐴 +Q
([〈((𝑦 +o
2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈)) |
| 48 | 40, 47 | anbi12d 473 |
. . . . . 6
⊢ (𝑦 = ∅ → (((𝐴 +Q0
([〈𝑦,
1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈))) |
| 49 | 48 | rspcev 2868 |
. . . . 5
⊢ ((∅
∈ ω ∧ ((𝐴
+Q0 ([〈∅, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈)) |
| 50 | 35, 49 | mpan 424 |
. . . 4
⊢ (((𝐴 +Q0
([〈∅, 1o〉] ~Q0
·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q
([〈((∅ +o 2o) +o 𝑥), 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈)) |
| 51 | 21, 34, 50 | syl6an 1445 |
. . 3
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → ((2o +o 𝑥) = 𝑁 → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈))) |
| 52 | 51 | reximdv 2598 |
. 2
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → (∃𝑥 ∈ ω (2o +o
𝑥) = 𝑁 → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈))) |
| 53 | 3, 52 | mpd 13 |
1
⊢
(((〈𝐿, 𝑈〉 ∈ P
∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧
1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉]
~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉]
~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o)
+o 𝑥),
1o〉] ~Q
·Q 𝑃)) ∈ 𝑈)) |