ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem5 GIF version

Theorem prarloclem5 7437
Description: A substitution of zero for 𝑦 and 𝑁 minus two for 𝑥. Lemma for prarloc 7440. (Contributed by Jim Kingdon, 4-Nov-2019.)
Assertion
Ref Expression
prarloclem5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐿,𝑦   𝑥,𝑁   𝑥,𝑃,𝑦   𝑥,𝑈,𝑦
Allowed substitution hint:   𝑁(𝑦)

Proof of Theorem prarloclem5
StepHypRef Expression
1 prarloclemn 7436 . . . 4 ((𝑁N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
213adant2 1006 . . 3 ((𝑁N𝑃Q ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
323ad2ant2 1009 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
4 elprnql 7418 . . . . . . 7 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) → 𝐴Q)
543ad2ant1 1008 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴Q)
6 simp22 1021 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝑃Q)
7 nqnq0 7378 . . . . . . . . 9 QQ0
87sseli 3137 . . . . . . . 8 (𝐴Q𝐴Q0)
9 nq0a0 7394 . . . . . . . 8 (𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)
108, 9syl 14 . . . . . . 7 (𝐴Q → (𝐴 +Q0 0Q0) = 𝐴)
117sseli 3137 . . . . . . . . . 10 (𝑃Q𝑃Q0)
12 nq0m0r 7393 . . . . . . . . . 10 (𝑃Q0 → (0Q0 ·Q0 𝑃) = 0Q0)
1311, 12syl 14 . . . . . . . . 9 (𝑃Q → (0Q0 ·Q0 𝑃) = 0Q0)
14 df-0nq0 7363 . . . . . . . . . 10 0Q0 = [⟨∅, 1o⟩] ~Q0
1514oveq1i 5851 . . . . . . . . 9 (0Q0 ·Q0 𝑃) = ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)
1613, 15eqtr3di 2213 . . . . . . . 8 (𝑃Q → 0Q0 = ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃))
1716oveq2d 5857 . . . . . . 7 (𝑃Q → (𝐴 +Q0 0Q0) = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
1810, 17sylan9req 2219 . . . . . 6 ((𝐴Q𝑃Q) → 𝐴 = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
195, 6, 18syl2anc 409 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴 = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
20 simp1r 1012 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴𝐿)
2119, 20eqeltrrd 2243 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿)
22 2onn 6485 . . . . . . . . . . . . . . 15 2o ∈ ω
23 nna0r 6442 . . . . . . . . . . . . . . 15 (2o ∈ ω → (∅ +o 2o) = 2o)
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (∅ +o 2o) = 2o
2524oveq1i 5851 . . . . . . . . . . . . 13 ((∅ +o 2o) +o 𝑥) = (2o +o 𝑥)
2625eqeq1i 2173 . . . . . . . . . . . 12 (((∅ +o 2o) +o 𝑥) = 𝑁 ↔ (2o +o 𝑥) = 𝑁)
2726biimpri 132 . . . . . . . . . . 11 ((2o +o 𝑥) = 𝑁 → ((∅ +o 2o) +o 𝑥) = 𝑁)
2827opeq1d 3763 . . . . . . . . . 10 ((2o +o 𝑥) = 𝑁 → ⟨((∅ +o 2o) +o 𝑥), 1o⟩ = ⟨𝑁, 1o⟩)
2928eceq1d 6533 . . . . . . . . 9 ((2o +o 𝑥) = 𝑁 → [⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨𝑁, 1o⟩] ~Q )
3029oveq1d 5856 . . . . . . . 8 ((2o +o 𝑥) = 𝑁 → ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃))
3130oveq2d 5857 . . . . . . 7 ((2o +o 𝑥) = 𝑁 → (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)))
3231eleq1d 2234 . . . . . 6 ((2o +o 𝑥) = 𝑁 → ((𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
3332biimprcd 159 . . . . 5 ((𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 → ((2o +o 𝑥) = 𝑁 → (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
34333ad2ant3 1010 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ((2o +o 𝑥) = 𝑁 → (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
35 peano1 4570 . . . . 5 ∅ ∈ ω
36 opeq1 3757 . . . . . . . . . . 11 (𝑦 = ∅ → ⟨𝑦, 1o⟩ = ⟨∅, 1o⟩)
3736eceq1d 6533 . . . . . . . . . 10 (𝑦 = ∅ → [⟨𝑦, 1o⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 )
3837oveq1d 5856 . . . . . . . . 9 (𝑦 = ∅ → ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃) = ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃))
3938oveq2d 5857 . . . . . . . 8 (𝑦 = ∅ → (𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
4039eleq1d 2234 . . . . . . 7 (𝑦 = ∅ → ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
41 oveq1 5848 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑦 +o 2o) = (∅ +o 2o))
4241oveq1d 5856 . . . . . . . . . . . 12 (𝑦 = ∅ → ((𝑦 +o 2o) +o 𝑥) = ((∅ +o 2o) +o 𝑥))
4342opeq1d 3763 . . . . . . . . . . 11 (𝑦 = ∅ → ⟨((𝑦 +o 2o) +o 𝑥), 1o⟩ = ⟨((∅ +o 2o) +o 𝑥), 1o⟩)
4443eceq1d 6533 . . . . . . . . . 10 (𝑦 = ∅ → [⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q )
4544oveq1d 5856 . . . . . . . . 9 (𝑦 = ∅ → ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃))
4645oveq2d 5857 . . . . . . . 8 (𝑦 = ∅ → (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)))
4746eleq1d 2234 . . . . . . 7 (𝑦 = ∅ → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
4840, 47anbi12d 465 . . . . . 6 (𝑦 = ∅ → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
4948rspcev 2829 . . . . 5 ((∅ ∈ ω ∧ ((𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
5035, 49mpan 421 . . . 4 (((𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
5121, 34, 50syl6an 1422 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ((2o +o 𝑥) = 𝑁 → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
5251reximdv 2566 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → (∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁 → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
533, 52mpd 13 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wrex 2444  c0 3408  cop 3578   class class class wbr 3981  ωcom 4566  (class class class)co 5841  1oc1o 6373  2oc2o 6374   +o coa 6377  [cec 6495  Ncnpi 7209   <N clti 7212   ~Q ceq 7216  Qcnq 7217   +Q cplq 7219   ·Q cmq 7220   ~Q0 ceq0 7223  Q0cnq0 7224  0Q0c0q0 7225   +Q0 cplq0 7226   ·Q0 cmq0 7227  Pcnp 7228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-eprel 4266  df-id 4270  df-iord 4343  df-on 4345  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-irdg 6334  df-1o 6380  df-2o 6381  df-oadd 6384  df-omul 6385  df-er 6497  df-ec 6499  df-qs 6503  df-ni 7241  df-mi 7243  df-lti 7244  df-enq 7284  df-nqqs 7285  df-enq0 7361  df-nq0 7362  df-0nq0 7363  df-plq0 7364  df-mq0 7365  df-inp 7403
This theorem is referenced by:  prarloclem  7438
  Copyright terms: Public domain W3C validator