ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem5 GIF version

Theorem prarloclem5 7332
Description: A substitution of zero for 𝑦 and 𝑁 minus two for 𝑥. Lemma for prarloc 7335. (Contributed by Jim Kingdon, 4-Nov-2019.)
Assertion
Ref Expression
prarloclem5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐿,𝑦   𝑥,𝑁   𝑥,𝑃,𝑦   𝑥,𝑈,𝑦
Allowed substitution hint:   𝑁(𝑦)

Proof of Theorem prarloclem5
StepHypRef Expression
1 prarloclemn 7331 . . . 4 ((𝑁N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
213adant2 1001 . . 3 ((𝑁N𝑃Q ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
323ad2ant2 1004 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
4 elprnql 7313 . . . . . . 7 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) → 𝐴Q)
543ad2ant1 1003 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴Q)
6 simp22 1016 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝑃Q)
7 nqnq0 7273 . . . . . . . . 9 QQ0
87sseli 3098 . . . . . . . 8 (𝐴Q𝐴Q0)
9 nq0a0 7289 . . . . . . . 8 (𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)
108, 9syl 14 . . . . . . 7 (𝐴Q → (𝐴 +Q0 0Q0) = 𝐴)
11 df-0nq0 7258 . . . . . . . . . 10 0Q0 = [⟨∅, 1o⟩] ~Q0
1211oveq1i 5792 . . . . . . . . 9 (0Q0 ·Q0 𝑃) = ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)
137sseli 3098 . . . . . . . . . 10 (𝑃Q𝑃Q0)
14 nq0m0r 7288 . . . . . . . . . 10 (𝑃Q0 → (0Q0 ·Q0 𝑃) = 0Q0)
1513, 14syl 14 . . . . . . . . 9 (𝑃Q → (0Q0 ·Q0 𝑃) = 0Q0)
1612, 15syl5reqr 2188 . . . . . . . 8 (𝑃Q → 0Q0 = ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃))
1716oveq2d 5798 . . . . . . 7 (𝑃Q → (𝐴 +Q0 0Q0) = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
1810, 17sylan9req 2194 . . . . . 6 ((𝐴Q𝑃Q) → 𝐴 = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
195, 6, 18syl2anc 409 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴 = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
20 simp1r 1007 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → 𝐴𝐿)
2119, 20eqeltrrd 2218 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿)
22 2onn 6425 . . . . . . . . . . . . . . 15 2o ∈ ω
23 nna0r 6382 . . . . . . . . . . . . . . 15 (2o ∈ ω → (∅ +o 2o) = 2o)
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (∅ +o 2o) = 2o
2524oveq1i 5792 . . . . . . . . . . . . 13 ((∅ +o 2o) +o 𝑥) = (2o +o 𝑥)
2625eqeq1i 2148 . . . . . . . . . . . 12 (((∅ +o 2o) +o 𝑥) = 𝑁 ↔ (2o +o 𝑥) = 𝑁)
2726biimpri 132 . . . . . . . . . . 11 ((2o +o 𝑥) = 𝑁 → ((∅ +o 2o) +o 𝑥) = 𝑁)
2827opeq1d 3719 . . . . . . . . . 10 ((2o +o 𝑥) = 𝑁 → ⟨((∅ +o 2o) +o 𝑥), 1o⟩ = ⟨𝑁, 1o⟩)
2928eceq1d 6473 . . . . . . . . 9 ((2o +o 𝑥) = 𝑁 → [⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨𝑁, 1o⟩] ~Q )
3029oveq1d 5797 . . . . . . . 8 ((2o +o 𝑥) = 𝑁 → ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃))
3130oveq2d 5798 . . . . . . 7 ((2o +o 𝑥) = 𝑁 → (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)))
3231eleq1d 2209 . . . . . 6 ((2o +o 𝑥) = 𝑁 → ((𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
3332biimprcd 159 . . . . 5 ((𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 → ((2o +o 𝑥) = 𝑁 → (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
34333ad2ant3 1005 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ((2o +o 𝑥) = 𝑁 → (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
35 peano1 4516 . . . . 5 ∅ ∈ ω
36 opeq1 3713 . . . . . . . . . . 11 (𝑦 = ∅ → ⟨𝑦, 1o⟩ = ⟨∅, 1o⟩)
3736eceq1d 6473 . . . . . . . . . 10 (𝑦 = ∅ → [⟨𝑦, 1o⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 )
3837oveq1d 5797 . . . . . . . . 9 (𝑦 = ∅ → ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃) = ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃))
3938oveq2d 5798 . . . . . . . 8 (𝑦 = ∅ → (𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) = (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)))
4039eleq1d 2209 . . . . . . 7 (𝑦 = ∅ → ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
41 oveq1 5789 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑦 +o 2o) = (∅ +o 2o))
4241oveq1d 5797 . . . . . . . . . . . 12 (𝑦 = ∅ → ((𝑦 +o 2o) +o 𝑥) = ((∅ +o 2o) +o 𝑥))
4342opeq1d 3719 . . . . . . . . . . 11 (𝑦 = ∅ → ⟨((𝑦 +o 2o) +o 𝑥), 1o⟩ = ⟨((∅ +o 2o) +o 𝑥), 1o⟩)
4443eceq1d 6473 . . . . . . . . . 10 (𝑦 = ∅ → [⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q )
4544oveq1d 5797 . . . . . . . . 9 (𝑦 = ∅ → ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃))
4645oveq2d 5798 . . . . . . . 8 (𝑦 = ∅ → (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)))
4746eleq1d 2209 . . . . . . 7 (𝑦 = ∅ → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
4840, 47anbi12d 465 . . . . . 6 (𝑦 = ∅ → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
4948rspcev 2793 . . . . 5 ((∅ ∈ ω ∧ ((𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
5035, 49mpan 421 . . . 4 (((𝐴 +Q0 ([⟨∅, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((∅ +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
5121, 34, 50syl6an 1411 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ((2o +o 𝑥) = 𝑁 → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
5251reximdv 2536 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → (∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁 → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
533, 52mpd 13 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  wrex 2418  c0 3368  cop 3535   class class class wbr 3937  ωcom 4512  (class class class)co 5782  1oc1o 6314  2oc2o 6315   +o coa 6318  [cec 6435  Ncnpi 7104   <N clti 7107   ~Q ceq 7111  Qcnq 7112   +Q cplq 7114   ·Q cmq 7115   ~Q0 ceq0 7118  Q0cnq0 7119  0Q0c0q0 7120   +Q0 cplq0 7121   ·Q0 cmq0 7122  Pcnp 7123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-mi 7138  df-lti 7139  df-enq 7179  df-nqqs 7180  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298
This theorem is referenced by:  prarloclem  7333
  Copyright terms: Public domain W3C validator