Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simplbi2com | GIF version |
Description: A deduction eliminating a conjunct, similar to simplbi2 385. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
Ref | Expression |
---|---|
simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | simplbi2 385 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
3 | 2 | com12 30 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mo2r 2076 mo3h 2077 elres 4936 xpidtr 5011 peano5nnnn 7866 peano5nni 8893 modprmn0modprm0 12221 insubm 12732 cnptoprest 13290 |
Copyright terms: Public domain | W3C validator |