ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2com GIF version

Theorem simplbi2com 1437
Description: A deduction eliminating a conjunct, similar to simplbi2 383. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
Hypothesis
Ref Expression
simplbi2com.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2com (𝜒 → (𝜓𝜑))

Proof of Theorem simplbi2com
StepHypRef Expression
1 simplbi2com.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21simplbi2 383 . 2 (𝜓 → (𝜒𝜑))
32com12 30 1 (𝜒 → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  mo2r  2071  mo3h  2072  elres  4927  xpidtr  5001  peano5nnnn  7854  peano5nni  8881  modprmn0modprm0  12210  insubm  12703  cnptoprest  13033
  Copyright terms: Public domain W3C validator