ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expdcom GIF version

Theorem expdcom 1383
Description: Commuted form of expd 255. (Contributed by Alan Sare, 18-Mar-2012.)
Hypothesis
Ref Expression
expdcom.1 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
expdcom (𝜓 → (𝜒 → (𝜑𝜃)))

Proof of Theorem expdcom
StepHypRef Expression
1 expdcom.1 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
21expd 255 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32com3l 81 1 (𝜓 → (𝜒 → (𝜑𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 107
This theorem is referenced by:  nndi  6287  nnmass  6288  mulexp  10125  expadd  10128  expmul  10131
  Copyright terms: Public domain W3C validator