ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcomd GIF version

Theorem expcomd 1452
Description: Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.)
Hypothesis
Ref Expression
expcomd.1 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
expcomd (𝜑 → (𝜒 → (𝜓𝜃)))

Proof of Theorem expcomd
StepHypRef Expression
1 expcomd.1 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
21expd 258 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32com23 78 1 (𝜑 → (𝜒 → (𝜓𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  simplbi2comg  1454  2moswapdc  2128  indifdir  3406  reupick  3434  issod  4334  poxp  6252  smores2  6314  smoiun  6321  mapxpen  6867  f1dmvrnfibi  6963  recexprlemm  7643  ltleletr  8059  fzind  9388  iccid  9945  ssfzo12bi  10245  dvdsabseq  11873  divalgb  11950  cncongr1  12123  difsqpwdvds  12357  lss1d  13667  txlm  14183  blsscls2  14397  metcnpi3  14421
  Copyright terms: Public domain W3C validator