Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expcomd | GIF version |
Description: Deduction form of expcom 115. (Contributed by Alan Sare, 22-Jul-2012.) |
Ref | Expression |
---|---|
expcomd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expcomd | ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcomd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 256 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 78 | 1 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: simplbi2comg 1436 2moswapdc 2109 indifdir 3383 reupick 3411 issod 4304 poxp 6211 smores2 6273 smoiun 6280 mapxpen 6826 f1dmvrnfibi 6921 recexprlemm 7586 ltleletr 8001 fzind 9327 iccid 9882 ssfzo12bi 10181 dvdsabseq 11807 divalgb 11884 cncongr1 12057 difsqpwdvds 12291 txlm 13073 blsscls2 13287 metcnpi3 13311 |
Copyright terms: Public domain | W3C validator |