Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expcomd | GIF version |
Description: Deduction form of expcom 115. (Contributed by Alan Sare, 22-Jul-2012.) |
Ref | Expression |
---|---|
expcomd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expcomd | ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcomd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 256 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 78 | 1 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: simplbi2comg 1431 2moswapdc 2104 indifdir 3378 reupick 3406 issod 4297 poxp 6200 smores2 6262 smoiun 6269 mapxpen 6814 f1dmvrnfibi 6909 recexprlemm 7565 ltleletr 7980 fzind 9306 iccid 9861 ssfzo12bi 10160 dvdsabseq 11785 divalgb 11862 cncongr1 12035 difsqpwdvds 12269 txlm 12919 blsscls2 13133 metcnpi3 13157 |
Copyright terms: Public domain | W3C validator |