| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcomd | GIF version | ||
| Description: Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.) |
| Ref | Expression |
|---|---|
| expcomd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expcomd | ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcomd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | 1 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: simplbi2comg 1464 2moswapdc 2145 indifdir 3430 reupick 3458 issod 4370 poxp 6325 smores2 6387 smoiun 6394 mapxpen 6952 f1dmvrnfibi 7053 recexprlemm 7744 ltleletr 8161 fzind 9495 iccid 10054 ssfzo12bi 10361 dvdsabseq 12202 divalgb 12280 cncongr1 12469 difsqpwdvds 12705 lss1d 14189 txlm 14795 blsscls2 15009 metcnpi3 15033 |
| Copyright terms: Public domain | W3C validator |