ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcomd GIF version

Theorem expcomd 1451
Description: Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.)
Hypothesis
Ref Expression
expcomd.1 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
expcomd (𝜑 → (𝜒 → (𝜓𝜃)))

Proof of Theorem expcomd
StepHypRef Expression
1 expcomd.1 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
21expd 258 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32com23 78 1 (𝜑 → (𝜒 → (𝜓𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  simplbi2comg  1453  2moswapdc  2126  indifdir  3403  reupick  3431  issod  4331  poxp  6247  smores2  6309  smoiun  6316  mapxpen  6862  f1dmvrnfibi  6957  recexprlemm  7637  ltleletr  8053  fzind  9382  iccid  9939  ssfzo12bi  10239  dvdsabseq  11867  divalgb  11944  cncongr1  12117  difsqpwdvds  12351  lss1d  13572  txlm  14075  blsscls2  14289  metcnpi3  14313
  Copyright terms: Public domain W3C validator