ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcomd GIF version

Theorem expcomd 1462
Description: Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.)
Hypothesis
Ref Expression
expcomd.1 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
expcomd (𝜑 → (𝜒 → (𝜓𝜃)))

Proof of Theorem expcomd
StepHypRef Expression
1 expcomd.1 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
21expd 258 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32com23 78 1 (𝜑 → (𝜒 → (𝜓𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  simplbi2comg  1464  2moswapdc  2145  indifdir  3430  reupick  3458  issod  4370  poxp  6325  smores2  6387  smoiun  6394  mapxpen  6952  f1dmvrnfibi  7053  recexprlemm  7744  ltleletr  8161  fzind  9495  iccid  10054  ssfzo12bi  10361  dvdsabseq  12202  divalgb  12280  cncongr1  12469  difsqpwdvds  12705  lss1d  14189  txlm  14795  blsscls2  15009  metcnpi3  15033
  Copyright terms: Public domain W3C validator