![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expcomd | GIF version |
Description: Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.) |
Ref | Expression |
---|---|
expcomd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expcomd | ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcomd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 78 | 1 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: simplbi2comg 1453 2moswapdc 2126 indifdir 3403 reupick 3431 issod 4331 poxp 6247 smores2 6309 smoiun 6316 mapxpen 6862 f1dmvrnfibi 6957 recexprlemm 7637 ltleletr 8053 fzind 9382 iccid 9939 ssfzo12bi 10239 dvdsabseq 11867 divalgb 11944 cncongr1 12117 difsqpwdvds 12351 lss1d 13572 txlm 14075 blsscls2 14289 metcnpi3 14313 |
Copyright terms: Public domain | W3C validator |