| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcomd | GIF version | ||
| Description: Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.) |
| Ref | Expression |
|---|---|
| expcomd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expcomd | ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcomd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | 1 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: simplbi2comg 1454 2moswapdc 2135 indifdir 3420 reupick 3448 issod 4355 poxp 6299 smores2 6361 smoiun 6368 mapxpen 6918 f1dmvrnfibi 7019 recexprlemm 7710 ltleletr 8127 fzind 9460 iccid 10019 ssfzo12bi 10320 dvdsabseq 12031 divalgb 12109 cncongr1 12298 difsqpwdvds 12534 lss1d 14017 txlm 14601 blsscls2 14815 metcnpi3 14839 |
| Copyright terms: Public domain | W3C validator |