| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcomd | GIF version | ||
| Description: Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.) |
| Ref | Expression |
|---|---|
| expcomd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expcomd | ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcomd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | 1 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: simplbi2comg 1486 2moswapdc 2168 indifdir 3460 reupick 3488 issod 4410 poxp 6384 smores2 6446 smoiun 6453 mapxpen 7017 f1dmvrnfibi 7119 recexprlemm 7819 ltleletr 8236 fzind 9570 iccid 10129 ssfzo12bi 10439 pfxccatin12lem2 11271 swrdccat 11275 dvdsabseq 12366 divalgb 12444 cncongr1 12633 difsqpwdvds 12869 lss1d 14355 txlm 14961 blsscls2 15175 metcnpi3 15199 |
| Copyright terms: Public domain | W3C validator |