![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expcomd | GIF version |
Description: Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.) |
Ref | Expression |
---|---|
expcomd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expcomd | ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcomd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 78 | 1 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: simplbi2comg 1454 2moswapdc 2128 indifdir 3406 reupick 3434 issod 4334 poxp 6252 smores2 6314 smoiun 6321 mapxpen 6867 f1dmvrnfibi 6963 recexprlemm 7643 ltleletr 8059 fzind 9388 iccid 9945 ssfzo12bi 10245 dvdsabseq 11873 divalgb 11950 cncongr1 12123 difsqpwdvds 12357 lss1d 13667 txlm 14183 blsscls2 14397 metcnpi3 14421 |
Copyright terms: Public domain | W3C validator |