| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcomd | GIF version | ||
| Description: Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.) |
| Ref | Expression |
|---|---|
| expcomd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expcomd | ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcomd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | 1 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: simplbi2comg 1466 2moswapdc 2148 indifdir 3440 reupick 3468 issod 4387 poxp 6348 smores2 6410 smoiun 6417 mapxpen 6977 f1dmvrnfibi 7079 recexprlemm 7779 ltleletr 8196 fzind 9530 iccid 10089 ssfzo12bi 10398 pfxccatin12lem2 11229 swrdccat 11233 dvdsabseq 12324 divalgb 12402 cncongr1 12591 difsqpwdvds 12827 lss1d 14312 txlm 14918 blsscls2 15132 metcnpi3 15156 |
| Copyright terms: Public domain | W3C validator |