| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > stbid | GIF version | ||
| Description: The equivalent of a stable proposition is stable. (Contributed by Jim Kingdon, 12-Aug-2022.) | 
| Ref | Expression | 
|---|---|
| stbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| stbid | ⊢ (𝜑 → (STAB 𝜓 ↔ STAB 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | stbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | notbid 668 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) | 
| 3 | 2 | notbid 668 | . . 3 ⊢ (𝜑 → (¬ ¬ 𝜓 ↔ ¬ ¬ 𝜒)) | 
| 4 | 3, 1 | imbi12d 234 | . 2 ⊢ (𝜑 → ((¬ ¬ 𝜓 → 𝜓) ↔ (¬ ¬ 𝜒 → 𝜒))) | 
| 5 | df-stab 832 | . 2 ⊢ (STAB 𝜓 ↔ (¬ ¬ 𝜓 → 𝜓)) | |
| 6 | df-stab 832 | . 2 ⊢ (STAB 𝜒 ↔ (¬ ¬ 𝜒 → 𝜒)) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝜑 → (STAB 𝜓 ↔ STAB 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 STAB wstab 831 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 | 
| This theorem is referenced by: dfss4st 3396 exmid1stab 4241 cnstab 8672 | 
| Copyright terms: Public domain | W3C validator |