ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  stbid Unicode version

Theorem stbid 832
Description: The equivalent of a stable proposition is stable. (Contributed by Jim Kingdon, 12-Aug-2022.)
Hypothesis
Ref Expression
stbid.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
stbid  |-  ( ph  ->  (STAB  ps  <-> STAB  ch ) )

Proof of Theorem stbid
StepHypRef Expression
1 stbid.1 . . . . 5  |-  ( ph  ->  ( ps  <->  ch )
)
21notbid 667 . . . 4  |-  ( ph  ->  ( -.  ps  <->  -.  ch )
)
32notbid 667 . . 3  |-  ( ph  ->  ( -.  -.  ps  <->  -. 
-.  ch ) )
43, 1imbi12d 234 . 2  |-  ( ph  ->  ( ( -.  -.  ps  ->  ps )  <->  ( -.  -.  ch  ->  ch )
) )
5 df-stab 831 . 2  |-  (STAB  ps  <->  ( -.  -.  ps  ->  ps )
)
6 df-stab 831 . 2  |-  (STAB  ch  <->  ( -.  -.  ch  ->  ch )
)
74, 5, 63bitr4g 223 1  |-  ( ph  ->  (STAB  ps  <-> STAB  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105  STAB wstab 830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-stab 831
This theorem is referenced by:  dfss4st  3370  exmid1stab  4210  cnstab  8604
  Copyright terms: Public domain W3C validator