| Step | Hyp | Ref
| Expression |
| 1 | | 0ex 4161 |
. . . . . . . . 9
⊢ ∅
∈ V |
| 2 | 1 | snid 3654 |
. . . . . . . 8
⊢ ∅
∈ {∅} |
| 3 | | nnexmid 851 |
. . . . . . . . . . 11
⊢ ¬
¬ (𝑦 = {∅} ∨
¬ 𝑦 =
{∅}) |
| 4 | | uneq1 3311 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) = ({∅} ∪ ({∅}
∖ 𝑦))) |
| 5 | | undifabs 3528 |
. . . . . . . . . . . . . . 15
⊢
({∅} ∪ ({∅} ∖ 𝑦)) = {∅} |
| 6 | 4, 5 | eqtrdi 2245 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}) |
| 7 | 6 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ {∅} → (𝑦 = {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) =
{∅})) |
| 8 | | df-ne 2368 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ≠ {∅} ↔ ¬
𝑦 =
{∅}) |
| 9 | | pwntru 4233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ⊆ {∅} ∧ 𝑦 ≠ {∅}) → 𝑦 = ∅) |
| 10 | 8, 9 | sylan2br 288 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ {∅} ∧ ¬
𝑦 = {∅}) → 𝑦 = ∅) |
| 11 | 10 | difeq2d 3282 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ⊆ {∅} ∧ ¬
𝑦 = {∅}) →
({∅} ∖ 𝑦) =
({∅} ∖ ∅)) |
| 12 | | dif0 3522 |
. . . . . . . . . . . . . . . . 17
⊢
({∅} ∖ ∅) = {∅} |
| 13 | 11, 12 | eqtrdi 2245 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ {∅} ∧ ¬
𝑦 = {∅}) →
({∅} ∖ 𝑦) =
{∅}) |
| 14 | 10, 13 | uneq12d 3319 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ {∅} ∧ ¬
𝑦 = {∅}) →
(𝑦 ∪ ({∅} ∖
𝑦)) = (∅ ∪
{∅})) |
| 15 | | uncom 3308 |
. . . . . . . . . . . . . . . 16
⊢ (∅
∪ {∅}) = ({∅} ∪ ∅) |
| 16 | | un0 3485 |
. . . . . . . . . . . . . . . 16
⊢
({∅} ∪ ∅) = {∅} |
| 17 | 15, 16 | eqtri 2217 |
. . . . . . . . . . . . . . 15
⊢ (∅
∪ {∅}) = {∅} |
| 18 | 14, 17 | eqtrdi 2245 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ {∅} ∧ ¬
𝑦 = {∅}) →
(𝑦 ∪ ({∅} ∖
𝑦)) =
{∅}) |
| 19 | 18 | ex 115 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ {∅} → (¬
𝑦 = {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) =
{∅})) |
| 20 | 7, 19 | jaod 718 |
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ {∅} →
((𝑦 = {∅} ∨ ¬
𝑦 = {∅}) →
(𝑦 ∪ ({∅} ∖
𝑦)) =
{∅})) |
| 21 | 20 | con3d 632 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ {∅} → (¬
(𝑦 ∪ ({∅} ∖
𝑦)) = {∅} →
¬ (𝑦 = {∅} ∨
¬ 𝑦 =
{∅}))) |
| 22 | 3, 21 | mtoi 665 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ {∅} → ¬
¬ (𝑦 ∪ ({∅}
∖ 𝑦)) =
{∅}) |
| 23 | 22 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → ¬ ¬ (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}) |
| 24 | | difss 3290 |
. . . . . . . . . . . . 13
⊢
({∅} ∖ 𝑦) ⊆ {∅} |
| 25 | | unss 3338 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ {∅} ∧
({∅} ∖ 𝑦)
⊆ {∅}) ↔ (𝑦 ∪ ({∅} ∖ 𝑦)) ⊆ {∅}) |
| 26 | 25 | biimpi 120 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ {∅} ∧
({∅} ∖ 𝑦)
⊆ {∅}) → (𝑦 ∪ ({∅} ∖ 𝑦)) ⊆ {∅}) |
| 27 | 24, 26 | mpan2 425 |
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) ⊆
{∅}) |
| 28 | 27 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → (𝑦 ∪ ({∅} ∖ 𝑦)) ⊆
{∅}) |
| 29 | | exmid1stab.x |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) →
STAB 𝑥 =
{∅}) |
| 30 | 29 | ex 115 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ⊆ {∅} → STAB
𝑥 =
{∅})) |
| 31 | 30 | alrimiv 1888 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥(𝑥 ⊆ {∅} → STAB
𝑥 =
{∅})) |
| 32 | | p0ex 4222 |
. . . . . . . . . . . . . 14
⊢ {∅}
∈ V |
| 33 | 32 | ssex 4171 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∪ ({∅} ∖ 𝑦)) ⊆ {∅} →
(𝑦 ∪ ({∅} ∖
𝑦)) ∈
V) |
| 34 | | sseq1 3207 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 ∪ ({∅} ∖ 𝑦)) → (𝑥 ⊆ {∅} ↔ (𝑦 ∪ ({∅} ∖ 𝑦)) ⊆ {∅})) |
| 35 | | eqeq1 2203 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 ∪ ({∅} ∖ 𝑦)) → (𝑥 = {∅} ↔ (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅})) |
| 36 | 35 | stbid 833 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 ∪ ({∅} ∖ 𝑦)) → (STAB 𝑥 = {∅} ↔
STAB (𝑦
∪ ({∅} ∖ 𝑦)) = {∅})) |
| 37 | 34, 36 | imbi12d 234 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 ∪ ({∅} ∖ 𝑦)) → ((𝑥 ⊆ {∅} → STAB
𝑥 = {∅}) ↔
((𝑦 ∪ ({∅}
∖ 𝑦)) ⊆
{∅} → STAB (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}))) |
| 38 | 37 | spcgv 2851 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∪ ({∅} ∖ 𝑦)) ∈ V →
(∀𝑥(𝑥 ⊆ {∅} →
STAB 𝑥 =
{∅}) → ((𝑦 ∪
({∅} ∖ 𝑦))
⊆ {∅} → STAB (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}))) |
| 39 | 27, 33, 38 | 3syl 17 |
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ {∅} →
(∀𝑥(𝑥 ⊆ {∅} →
STAB 𝑥 =
{∅}) → ((𝑦 ∪
({∅} ∖ 𝑦))
⊆ {∅} → STAB (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}))) |
| 40 | 31, 39 | mpan9 281 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → ((𝑦 ∪ ({∅} ∖ 𝑦)) ⊆ {∅} →
STAB (𝑦
∪ ({∅} ∖ 𝑦)) = {∅})) |
| 41 | 28, 40 | mpd 13 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) →
STAB (𝑦
∪ ({∅} ∖ 𝑦)) = {∅}) |
| 42 | | df-stab 832 |
. . . . . . . . . 10
⊢
(STAB (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅} ↔ (¬ ¬ (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) =
{∅})) |
| 43 | 41, 42 | sylib 122 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → (¬ ¬
(𝑦 ∪ ({∅} ∖
𝑦)) = {∅} →
(𝑦 ∪ ({∅} ∖
𝑦)) =
{∅})) |
| 44 | 23, 43 | mpd 13 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}) |
| 45 | 2, 44 | eleqtrrid 2286 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → ∅ ∈
(𝑦 ∪ ({∅} ∖
𝑦))) |
| 46 | | elun 3305 |
. . . . . . 7
⊢ (∅
∈ (𝑦 ∪ ({∅}
∖ 𝑦)) ↔ (∅
∈ 𝑦 ∨ ∅
∈ ({∅} ∖ 𝑦))) |
| 47 | 45, 46 | sylib 122 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → (∅ ∈
𝑦 ∨ ∅ ∈
({∅} ∖ 𝑦))) |
| 48 | | eldifn 3287 |
. . . . . . 7
⊢ (∅
∈ ({∅} ∖ 𝑦) → ¬ ∅ ∈ 𝑦) |
| 49 | 48 | orim2i 762 |
. . . . . 6
⊢ ((∅
∈ 𝑦 ∨ ∅
∈ ({∅} ∖ 𝑦)) → (∅ ∈ 𝑦 ∨ ¬ ∅ ∈ 𝑦)) |
| 50 | 47, 49 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → (∅ ∈
𝑦 ∨ ¬ ∅ ∈
𝑦)) |
| 51 | | df-dc 836 |
. . . . 5
⊢
(DECID ∅ ∈ 𝑦 ↔ (∅ ∈ 𝑦 ∨ ¬ ∅ ∈ 𝑦)) |
| 52 | 50, 51 | sylibr 134 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) →
DECID ∅ ∈ 𝑦) |
| 53 | 52 | ex 115 |
. . 3
⊢ (𝜑 → (𝑦 ⊆ {∅} →
DECID ∅ ∈ 𝑦)) |
| 54 | 53 | alrimiv 1888 |
. 2
⊢ (𝜑 → ∀𝑦(𝑦 ⊆ {∅} →
DECID ∅ ∈ 𝑦)) |
| 55 | | df-exmid 4229 |
. 2
⊢
(EXMID ↔ ∀𝑦(𝑦 ⊆ {∅} →
DECID ∅ ∈ 𝑦)) |
| 56 | 54, 55 | sylibr 134 |
1
⊢ (𝜑 →
EXMID) |