| Step | Hyp | Ref
 | Expression | 
| 1 |   | 0ex 4160 | 
. . . . . . . . 9
⊢ ∅
∈ V | 
| 2 | 1 | snid 3653 | 
. . . . . . . 8
⊢ ∅
∈ {∅} | 
| 3 |   | nnexmid 851 | 
. . . . . . . . . . 11
⊢  ¬
¬ (𝑦 = {∅} ∨
¬ 𝑦 =
{∅}) | 
| 4 |   | uneq1 3310 | 
. . . . . . . . . . . . . . 15
⊢ (𝑦 = {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) = ({∅} ∪ ({∅}
∖ 𝑦))) | 
| 5 |   | undifabs 3527 | 
. . . . . . . . . . . . . . 15
⊢
({∅} ∪ ({∅} ∖ 𝑦)) = {∅} | 
| 6 | 4, 5 | eqtrdi 2245 | 
. . . . . . . . . . . . . 14
⊢ (𝑦 = {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}) | 
| 7 | 6 | a1i 9 | 
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ {∅} → (𝑦 = {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) =
{∅})) | 
| 8 |   | df-ne 2368 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ≠ {∅} ↔ ¬
𝑦 =
{∅}) | 
| 9 |   | pwntru 4232 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ⊆ {∅} ∧ 𝑦 ≠ {∅}) → 𝑦 = ∅) | 
| 10 | 8, 9 | sylan2br 288 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ {∅} ∧ ¬
𝑦 = {∅}) → 𝑦 = ∅) | 
| 11 | 10 | difeq2d 3281 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ⊆ {∅} ∧ ¬
𝑦 = {∅}) →
({∅} ∖ 𝑦) =
({∅} ∖ ∅)) | 
| 12 |   | dif0 3521 | 
. . . . . . . . . . . . . . . . 17
⊢
({∅} ∖ ∅) = {∅} | 
| 13 | 11, 12 | eqtrdi 2245 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ {∅} ∧ ¬
𝑦 = {∅}) →
({∅} ∖ 𝑦) =
{∅}) | 
| 14 | 10, 13 | uneq12d 3318 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ {∅} ∧ ¬
𝑦 = {∅}) →
(𝑦 ∪ ({∅} ∖
𝑦)) = (∅ ∪
{∅})) | 
| 15 |   | uncom 3307 | 
. . . . . . . . . . . . . . . 16
⊢ (∅
∪ {∅}) = ({∅} ∪ ∅) | 
| 16 |   | un0 3484 | 
. . . . . . . . . . . . . . . 16
⊢
({∅} ∪ ∅) = {∅} | 
| 17 | 15, 16 | eqtri 2217 | 
. . . . . . . . . . . . . . 15
⊢ (∅
∪ {∅}) = {∅} | 
| 18 | 14, 17 | eqtrdi 2245 | 
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ {∅} ∧ ¬
𝑦 = {∅}) →
(𝑦 ∪ ({∅} ∖
𝑦)) =
{∅}) | 
| 19 | 18 | ex 115 | 
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ {∅} → (¬
𝑦 = {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) =
{∅})) | 
| 20 | 7, 19 | jaod 718 | 
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ {∅} →
((𝑦 = {∅} ∨ ¬
𝑦 = {∅}) →
(𝑦 ∪ ({∅} ∖
𝑦)) =
{∅})) | 
| 21 | 20 | con3d 632 | 
. . . . . . . . . . 11
⊢ (𝑦 ⊆ {∅} → (¬
(𝑦 ∪ ({∅} ∖
𝑦)) = {∅} →
¬ (𝑦 = {∅} ∨
¬ 𝑦 =
{∅}))) | 
| 22 | 3, 21 | mtoi 665 | 
. . . . . . . . . 10
⊢ (𝑦 ⊆ {∅} → ¬
¬ (𝑦 ∪ ({∅}
∖ 𝑦)) =
{∅}) | 
| 23 | 22 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → ¬ ¬ (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}) | 
| 24 |   | difss 3289 | 
. . . . . . . . . . . . 13
⊢
({∅} ∖ 𝑦) ⊆ {∅} | 
| 25 |   | unss 3337 | 
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ {∅} ∧
({∅} ∖ 𝑦)
⊆ {∅}) ↔ (𝑦 ∪ ({∅} ∖ 𝑦)) ⊆ {∅}) | 
| 26 | 25 | biimpi 120 | 
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ {∅} ∧
({∅} ∖ 𝑦)
⊆ {∅}) → (𝑦 ∪ ({∅} ∖ 𝑦)) ⊆ {∅}) | 
| 27 | 24, 26 | mpan2 425 | 
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) ⊆
{∅}) | 
| 28 | 27 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → (𝑦 ∪ ({∅} ∖ 𝑦)) ⊆
{∅}) | 
| 29 |   | exmid1stab.x | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) →
STAB 𝑥 =
{∅}) | 
| 30 | 29 | ex 115 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ⊆ {∅} → STAB
𝑥 =
{∅})) | 
| 31 | 30 | alrimiv 1888 | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥(𝑥 ⊆ {∅} → STAB
𝑥 =
{∅})) | 
| 32 |   | p0ex 4221 | 
. . . . . . . . . . . . . 14
⊢ {∅}
∈ V | 
| 33 | 32 | ssex 4170 | 
. . . . . . . . . . . . 13
⊢ ((𝑦 ∪ ({∅} ∖ 𝑦)) ⊆ {∅} →
(𝑦 ∪ ({∅} ∖
𝑦)) ∈
V) | 
| 34 |   | sseq1 3206 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 ∪ ({∅} ∖ 𝑦)) → (𝑥 ⊆ {∅} ↔ (𝑦 ∪ ({∅} ∖ 𝑦)) ⊆ {∅})) | 
| 35 |   | eqeq1 2203 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 ∪ ({∅} ∖ 𝑦)) → (𝑥 = {∅} ↔ (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅})) | 
| 36 | 35 | stbid 833 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 ∪ ({∅} ∖ 𝑦)) → (STAB 𝑥 = {∅} ↔
STAB (𝑦
∪ ({∅} ∖ 𝑦)) = {∅})) | 
| 37 | 34, 36 | imbi12d 234 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 ∪ ({∅} ∖ 𝑦)) → ((𝑥 ⊆ {∅} → STAB
𝑥 = {∅}) ↔
((𝑦 ∪ ({∅}
∖ 𝑦)) ⊆
{∅} → STAB (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}))) | 
| 38 | 37 | spcgv 2851 | 
. . . . . . . . . . . . 13
⊢ ((𝑦 ∪ ({∅} ∖ 𝑦)) ∈ V →
(∀𝑥(𝑥 ⊆ {∅} →
STAB 𝑥 =
{∅}) → ((𝑦 ∪
({∅} ∖ 𝑦))
⊆ {∅} → STAB (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}))) | 
| 39 | 27, 33, 38 | 3syl 17 | 
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ {∅} →
(∀𝑥(𝑥 ⊆ {∅} →
STAB 𝑥 =
{∅}) → ((𝑦 ∪
({∅} ∖ 𝑦))
⊆ {∅} → STAB (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}))) | 
| 40 | 31, 39 | mpan9 281 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → ((𝑦 ∪ ({∅} ∖ 𝑦)) ⊆ {∅} →
STAB (𝑦
∪ ({∅} ∖ 𝑦)) = {∅})) | 
| 41 | 28, 40 | mpd 13 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) →
STAB (𝑦
∪ ({∅} ∖ 𝑦)) = {∅}) | 
| 42 |   | df-stab 832 | 
. . . . . . . . . 10
⊢
(STAB (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅} ↔ (¬ ¬ (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅} → (𝑦 ∪ ({∅} ∖ 𝑦)) =
{∅})) | 
| 43 | 41, 42 | sylib 122 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → (¬ ¬
(𝑦 ∪ ({∅} ∖
𝑦)) = {∅} →
(𝑦 ∪ ({∅} ∖
𝑦)) =
{∅})) | 
| 44 | 23, 43 | mpd 13 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → (𝑦 ∪ ({∅} ∖ 𝑦)) = {∅}) | 
| 45 | 2, 44 | eleqtrrid 2286 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → ∅ ∈
(𝑦 ∪ ({∅} ∖
𝑦))) | 
| 46 |   | elun 3304 | 
. . . . . . 7
⊢ (∅
∈ (𝑦 ∪ ({∅}
∖ 𝑦)) ↔ (∅
∈ 𝑦 ∨ ∅
∈ ({∅} ∖ 𝑦))) | 
| 47 | 45, 46 | sylib 122 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → (∅ ∈
𝑦 ∨ ∅ ∈
({∅} ∖ 𝑦))) | 
| 48 |   | eldifn 3286 | 
. . . . . . 7
⊢ (∅
∈ ({∅} ∖ 𝑦) → ¬ ∅ ∈ 𝑦) | 
| 49 | 48 | orim2i 762 | 
. . . . . 6
⊢ ((∅
∈ 𝑦 ∨ ∅
∈ ({∅} ∖ 𝑦)) → (∅ ∈ 𝑦 ∨ ¬ ∅ ∈ 𝑦)) | 
| 50 | 47, 49 | syl 14 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) → (∅ ∈
𝑦 ∨ ¬ ∅ ∈
𝑦)) | 
| 51 |   | df-dc 836 | 
. . . . 5
⊢
(DECID ∅ ∈ 𝑦 ↔ (∅ ∈ 𝑦 ∨ ¬ ∅ ∈ 𝑦)) | 
| 52 | 50, 51 | sylibr 134 | 
. . . 4
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) →
DECID ∅ ∈ 𝑦) | 
| 53 | 52 | ex 115 | 
. . 3
⊢ (𝜑 → (𝑦 ⊆ {∅} →
DECID ∅ ∈ 𝑦)) | 
| 54 | 53 | alrimiv 1888 | 
. 2
⊢ (𝜑 → ∀𝑦(𝑦 ⊆ {∅} →
DECID ∅ ∈ 𝑦)) | 
| 55 |   | df-exmid 4228 | 
. 2
⊢
(EXMID ↔ ∀𝑦(𝑦 ⊆ {∅} →
DECID ∅ ∈ 𝑦)) | 
| 56 | 54, 55 | sylibr 134 | 
1
⊢ (𝜑 →
EXMID) |