ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an1b GIF version

Theorem syl3an1b 1210
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an1b.1 (𝜑𝜓)
syl3an1b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an1b ((𝜑𝜒𝜃) → 𝜏)

Proof of Theorem syl3an1b
StepHypRef Expression
1 syl3an1b.1 . . 3 (𝜑𝜓)
21biimpi 118 . 2 (𝜑𝜓)
3 syl3an1b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an1 1207 1 ((𝜑𝜒𝜃) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  w3a 924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 926
This theorem is referenced by:  irrmul  9132  xrlttr  9265
  Copyright terms: Public domain W3C validator