| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an1 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an1.1 | ⊢ (𝜑 → 𝜓) |
| syl3an1.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | 3anim1i 1187 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an1.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3an1b 1285 syl3an1br 1288 wepo 4404 f1ofveu 5922 fovcdmda 6080 smoiso 6378 tfrcl 6440 omv 6531 oeiv 6532 nndi 6562 nnmsucr 6564 f1oen2g 6832 f1dom2g 6833 undiffi 7004 prarloclemarch2 7514 distrnq0 7554 ltprordil 7684 1idprl 7685 1idpru 7686 ltpopr 7690 ltexprlemopu 7698 ltexprlemdisj 7701 ltexprlemfl 7704 ltexprlemfu 7706 ltexprlemru 7707 recexprlemdisj 7725 recexprlemss1l 7730 recexprlemss1u 7731 cnegexlem1 8229 msqge0 8671 mulge0 8674 divnegap 8761 divdiv32ap 8775 divneg2ap 8791 peano2uz 9686 lbzbi 9719 negqmod0 10457 modqmuladdnn0 10494 expnlbnd 10790 shftfvalg 11048 xrmaxaddlem 11490 retanclap 11952 tannegap 11958 demoivreALT 12004 gcd0id 12219 isprm3 12359 euclemma 12387 phiprmpw 12463 fermltl 12475 sgrpcl 13159 mndcl 13173 imasmnd2 13202 grpcl 13258 dfgrp2 13277 grprcan 13287 grpsubcl 13330 imasgrp2 13364 mhmid 13369 mhmmnd 13370 mulginvcom 13401 mulgnndir 13405 mulgnnass 13411 qusgrp 13486 ghmmulg 13510 ghmrn 13511 ghmeqker 13525 ablcom 13557 ablinvadd 13564 ghmcmn 13581 rngacl 13622 rngpropd 13635 srgacl 13662 srgcom 13663 ringacl 13710 imasring 13744 subrngacl 13888 subrgacl 13912 subrgugrp 13920 lmodacl 13979 lmodmcl 13980 lmodvacl 13982 lmodvsubcl 14012 lmod4 14017 lmodvaddsub4 14019 lmodvpncan 14020 lmodvnpcan 14021 lmodsubeq0 14026 psmetcl 14716 xmetcl 14742 metcl 14743 meteq0 14750 metge0 14756 metsym 14761 blelrnps 14809 blelrn 14810 blssm 14811 blres 14824 mscl 14855 xmscl 14856 xmsge0 14857 xmseq0 14858 xmssym 14859 mopnin 14877 sincosq1sgn 15216 sincosq2sgn 15217 sincosq3sgn 15218 sincosq4sgn 15219 lgsneg1 15420 |
| Copyright terms: Public domain | W3C validator |