Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3an1 | GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an1.1 | ⊢ (𝜑 → 𝜓) |
syl3an1.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | 3anim1i 1180 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | syl3an1.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: syl3an1b 1269 syl3an1br 1272 wepo 4342 f1ofveu 5838 fovrnda 5993 smoiso 6278 tfrcl 6340 omv 6431 oeiv 6432 nndi 6462 nnmsucr 6464 f1oen2g 6729 f1dom2g 6730 undiffi 6898 prarloclemarch2 7368 distrnq0 7408 ltprordil 7538 1idprl 7539 1idpru 7540 ltpopr 7544 ltexprlemopu 7552 ltexprlemdisj 7555 ltexprlemfl 7558 ltexprlemfu 7560 ltexprlemru 7561 recexprlemdisj 7579 recexprlemss1l 7584 recexprlemss1u 7585 cnegexlem1 8081 msqge0 8522 mulge0 8525 divnegap 8610 divdiv32ap 8624 divneg2ap 8640 peano2uz 9529 lbzbi 9562 negqmod0 10274 modqmuladdnn0 10311 expnlbnd 10587 shftfvalg 10769 xrmaxaddlem 11210 retanclap 11672 tannegap 11678 demoivreALT 11723 gcd0id 11921 isprm3 12059 euclemma 12087 phiprmpw 12163 fermltl 12175 mndcl 12646 grpcl 12703 dfgrp2 12719 grprcan 12727 psmetcl 13079 xmetcl 13105 metcl 13106 meteq0 13113 metge0 13119 metsym 13124 blelrnps 13172 blelrn 13173 blssm 13174 blres 13187 mscl 13218 xmscl 13219 xmsge0 13220 xmseq0 13221 xmssym 13222 mopnin 13240 sincosq1sgn 13500 sincosq2sgn 13501 sincosq3sgn 13502 sincosq4sgn 13503 lgsneg1 13679 |
Copyright terms: Public domain | W3C validator |