| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an1 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an1.1 | ⊢ (𝜑 → 𝜓) |
| syl3an1.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | 3anim1i 1187 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an1.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3an1b 1285 syl3an1br 1288 wepo 4395 f1ofveu 5913 fovcdmda 6071 smoiso 6369 tfrcl 6431 omv 6522 oeiv 6523 nndi 6553 nnmsucr 6555 f1oen2g 6823 f1dom2g 6824 undiffi 6995 prarloclemarch2 7505 distrnq0 7545 ltprordil 7675 1idprl 7676 1idpru 7677 ltpopr 7681 ltexprlemopu 7689 ltexprlemdisj 7692 ltexprlemfl 7695 ltexprlemfu 7697 ltexprlemru 7698 recexprlemdisj 7716 recexprlemss1l 7721 recexprlemss1u 7722 cnegexlem1 8220 msqge0 8662 mulge0 8665 divnegap 8752 divdiv32ap 8766 divneg2ap 8782 peano2uz 9676 lbzbi 9709 negqmod0 10442 modqmuladdnn0 10479 expnlbnd 10775 shftfvalg 11002 xrmaxaddlem 11444 retanclap 11906 tannegap 11912 demoivreALT 11958 gcd0id 12173 isprm3 12313 euclemma 12341 phiprmpw 12417 fermltl 12429 sgrpcl 13113 mndcl 13127 imasmnd2 13156 grpcl 13212 dfgrp2 13231 grprcan 13241 grpsubcl 13284 imasgrp2 13318 mhmid 13323 mhmmnd 13324 mulginvcom 13355 mulgnndir 13359 mulgnnass 13365 qusgrp 13440 ghmmulg 13464 ghmrn 13465 ghmeqker 13479 ablcom 13511 ablinvadd 13518 ghmcmn 13535 rngacl 13576 rngpropd 13589 srgacl 13616 srgcom 13617 ringacl 13664 imasring 13698 subrngacl 13842 subrgacl 13866 subrgugrp 13874 lmodacl 13933 lmodmcl 13934 lmodvacl 13936 lmodvsubcl 13966 lmod4 13971 lmodvaddsub4 13973 lmodvpncan 13974 lmodvnpcan 13975 lmodsubeq0 13980 psmetcl 14670 xmetcl 14696 metcl 14697 meteq0 14704 metge0 14710 metsym 14715 blelrnps 14763 blelrn 14764 blssm 14765 blres 14778 mscl 14809 xmscl 14810 xmsge0 14811 xmseq0 14812 xmssym 14813 mopnin 14831 sincosq1sgn 15170 sincosq2sgn 15171 sincosq3sgn 15172 sincosq4sgn 15173 lgsneg1 15374 |
| Copyright terms: Public domain | W3C validator |