| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an1 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an1.1 | ⊢ (𝜑 → 𝜓) |
| syl3an1.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | 3anim1i 1209 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an1.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syl3an1b 1307 syl3an1br 1310 wepo 4449 f1ofveu 5988 fovcdmda 6148 smoiso 6446 tfrcl 6508 omv 6599 oeiv 6600 nndi 6630 nnmsucr 6632 f1oen2g 6904 f1dom2g 6905 undiffi 7083 prarloclemarch2 7602 distrnq0 7642 ltprordil 7772 1idprl 7773 1idpru 7774 ltpopr 7778 ltexprlemopu 7786 ltexprlemdisj 7789 ltexprlemfl 7792 ltexprlemfu 7794 ltexprlemru 7795 recexprlemdisj 7813 recexprlemss1l 7818 recexprlemss1u 7819 cnegexlem1 8317 msqge0 8759 mulge0 8762 divnegap 8849 divdiv32ap 8863 divneg2ap 8879 peano2uz 9774 lbzbi 9807 negqmod0 10548 modqmuladdnn0 10585 expnlbnd 10881 fun2dmnop 11065 shftfvalg 11324 xrmaxaddlem 11766 retanclap 12228 tannegap 12234 demoivreALT 12280 gcd0id 12495 isprm3 12635 euclemma 12663 phiprmpw 12739 fermltl 12751 sgrpcl 13437 mndcl 13451 imasmnd2 13480 grpcl 13536 dfgrp2 13555 grprcan 13565 grpsubcl 13608 imasgrp2 13642 mhmid 13647 mhmmnd 13648 mulginvcom 13679 mulgnndir 13683 mulgnnass 13689 qusgrp 13764 ghmmulg 13788 ghmrn 13789 ghmeqker 13803 ablcom 13835 ablinvadd 13842 ghmcmn 13859 rngacl 13900 rngpropd 13913 srgacl 13940 srgcom 13941 ringacl 13988 imasring 14022 subrngacl 14166 subrgacl 14190 subrgugrp 14198 lmodacl 14257 lmodmcl 14258 lmodvacl 14260 lmodvsubcl 14290 lmod4 14295 lmodvaddsub4 14297 lmodvpncan 14298 lmodvnpcan 14299 lmodsubeq0 14304 psmetcl 14994 xmetcl 15020 metcl 15021 meteq0 15028 metge0 15034 metsym 15039 blelrnps 15087 blelrn 15088 blssm 15089 blres 15102 mscl 15133 xmscl 15134 xmsge0 15135 xmseq0 15136 xmssym 15137 mopnin 15155 sincosq1sgn 15494 sincosq2sgn 15495 sincosq3sgn 15496 sincosq4sgn 15497 lgsneg1 15698 usgredg2vtx 16009 uspgredg2vtxeu 16010 usgredg2vtxeu 16011 |
| Copyright terms: Public domain | W3C validator |