| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an1 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an1.1 | ⊢ (𝜑 → 𝜓) |
| syl3an1.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | 3anim1i 1188 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an1.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl3an1b 1286 syl3an1br 1289 wepo 4414 f1ofveu 5945 fovcdmda 6103 smoiso 6401 tfrcl 6463 omv 6554 oeiv 6555 nndi 6585 nnmsucr 6587 f1oen2g 6859 f1dom2g 6860 undiffi 7037 prarloclemarch2 7552 distrnq0 7592 ltprordil 7722 1idprl 7723 1idpru 7724 ltpopr 7728 ltexprlemopu 7736 ltexprlemdisj 7739 ltexprlemfl 7742 ltexprlemfu 7744 ltexprlemru 7745 recexprlemdisj 7763 recexprlemss1l 7768 recexprlemss1u 7769 cnegexlem1 8267 msqge0 8709 mulge0 8712 divnegap 8799 divdiv32ap 8813 divneg2ap 8829 peano2uz 9724 lbzbi 9757 negqmod0 10498 modqmuladdnn0 10535 expnlbnd 10831 fun2dmnop 11015 shftfvalg 11204 xrmaxaddlem 11646 retanclap 12108 tannegap 12114 demoivreALT 12160 gcd0id 12375 isprm3 12515 euclemma 12543 phiprmpw 12619 fermltl 12631 sgrpcl 13316 mndcl 13330 imasmnd2 13359 grpcl 13415 dfgrp2 13434 grprcan 13444 grpsubcl 13487 imasgrp2 13521 mhmid 13526 mhmmnd 13527 mulginvcom 13558 mulgnndir 13562 mulgnnass 13568 qusgrp 13643 ghmmulg 13667 ghmrn 13668 ghmeqker 13682 ablcom 13714 ablinvadd 13721 ghmcmn 13738 rngacl 13779 rngpropd 13792 srgacl 13819 srgcom 13820 ringacl 13867 imasring 13901 subrngacl 14045 subrgacl 14069 subrgugrp 14077 lmodacl 14136 lmodmcl 14137 lmodvacl 14139 lmodvsubcl 14169 lmod4 14174 lmodvaddsub4 14176 lmodvpncan 14177 lmodvnpcan 14178 lmodsubeq0 14183 psmetcl 14873 xmetcl 14899 metcl 14900 meteq0 14907 metge0 14913 metsym 14918 blelrnps 14966 blelrn 14967 blssm 14968 blres 14981 mscl 15012 xmscl 15013 xmsge0 15014 xmseq0 15015 xmssym 15016 mopnin 15034 sincosq1sgn 15373 sincosq2sgn 15374 sincosq3sgn 15375 sincosq4sgn 15376 lgsneg1 15577 |
| Copyright terms: Public domain | W3C validator |