| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an1 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an1.1 | ⊢ (𝜑 → 𝜓) |
| syl3an1.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | 3anim1i 1187 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3an1.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3an1b 1285 syl3an1br 1288 wepo 4395 f1ofveu 5913 fovcdmda 6071 smoiso 6369 tfrcl 6431 omv 6522 oeiv 6523 nndi 6553 nnmsucr 6555 f1oen2g 6823 f1dom2g 6824 undiffi 6995 prarloclemarch2 7503 distrnq0 7543 ltprordil 7673 1idprl 7674 1idpru 7675 ltpopr 7679 ltexprlemopu 7687 ltexprlemdisj 7690 ltexprlemfl 7693 ltexprlemfu 7695 ltexprlemru 7696 recexprlemdisj 7714 recexprlemss1l 7719 recexprlemss1u 7720 cnegexlem1 8218 msqge0 8660 mulge0 8663 divnegap 8750 divdiv32ap 8764 divneg2ap 8780 peano2uz 9674 lbzbi 9707 negqmod0 10440 modqmuladdnn0 10477 expnlbnd 10773 shftfvalg 11000 xrmaxaddlem 11442 retanclap 11904 tannegap 11910 demoivreALT 11956 gcd0id 12171 isprm3 12311 euclemma 12339 phiprmpw 12415 fermltl 12427 sgrpcl 13111 mndcl 13125 imasmnd2 13154 grpcl 13210 dfgrp2 13229 grprcan 13239 grpsubcl 13282 imasgrp2 13316 mhmid 13321 mhmmnd 13322 mulginvcom 13353 mulgnndir 13357 mulgnnass 13363 qusgrp 13438 ghmmulg 13462 ghmrn 13463 ghmeqker 13477 ablcom 13509 ablinvadd 13516 ghmcmn 13533 rngacl 13574 rngpropd 13587 srgacl 13614 srgcom 13615 ringacl 13662 imasring 13696 subrngacl 13840 subrgacl 13864 subrgugrp 13872 lmodacl 13931 lmodmcl 13932 lmodvacl 13934 lmodvsubcl 13964 lmod4 13969 lmodvaddsub4 13971 lmodvpncan 13972 lmodvnpcan 13973 lmodsubeq0 13978 psmetcl 14646 xmetcl 14672 metcl 14673 meteq0 14680 metge0 14686 metsym 14691 blelrnps 14739 blelrn 14740 blssm 14741 blres 14754 mscl 14785 xmscl 14786 xmsge0 14787 xmseq0 14788 xmssym 14789 mopnin 14807 sincosq1sgn 15146 sincosq2sgn 15147 sincosq3sgn 15148 sincosq4sgn 15149 lgsneg1 15350 |
| Copyright terms: Public domain | W3C validator |