![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an1 | GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an1.1 | ⊢ (𝜑 → 𝜓) |
syl3an1.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | 3anim1i 1187 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | syl3an1.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syl3an1b 1285 syl3an1br 1288 wepo 4390 f1ofveu 5906 fovcdmda 6062 smoiso 6355 tfrcl 6417 omv 6508 oeiv 6509 nndi 6539 nnmsucr 6541 f1oen2g 6809 f1dom2g 6810 undiffi 6981 prarloclemarch2 7479 distrnq0 7519 ltprordil 7649 1idprl 7650 1idpru 7651 ltpopr 7655 ltexprlemopu 7663 ltexprlemdisj 7666 ltexprlemfl 7669 ltexprlemfu 7671 ltexprlemru 7672 recexprlemdisj 7690 recexprlemss1l 7695 recexprlemss1u 7696 cnegexlem1 8194 msqge0 8635 mulge0 8638 divnegap 8725 divdiv32ap 8739 divneg2ap 8755 peano2uz 9648 lbzbi 9681 negqmod0 10402 modqmuladdnn0 10439 expnlbnd 10735 shftfvalg 10962 xrmaxaddlem 11403 retanclap 11865 tannegap 11871 demoivreALT 11917 gcd0id 12116 isprm3 12256 euclemma 12284 phiprmpw 12360 fermltl 12372 sgrpcl 12992 mndcl 13004 grpcl 13080 dfgrp2 13099 grprcan 13109 grpsubcl 13152 imasgrp2 13180 mhmid 13185 mhmmnd 13186 mulginvcom 13217 mulgnndir 13221 mulgnnass 13227 qusgrp 13302 ghmmulg 13326 ghmrn 13327 ghmeqker 13341 ablcom 13373 ablinvadd 13380 ghmcmn 13397 rngacl 13438 rngpropd 13451 srgacl 13478 srgcom 13479 ringacl 13526 imasring 13560 subrngacl 13704 subrgacl 13728 subrgugrp 13736 lmodacl 13795 lmodmcl 13796 lmodvacl 13798 lmodvsubcl 13828 lmod4 13833 lmodvaddsub4 13835 lmodvpncan 13836 lmodvnpcan 13837 lmodsubeq0 13842 psmetcl 14494 xmetcl 14520 metcl 14521 meteq0 14528 metge0 14534 metsym 14539 blelrnps 14587 blelrn 14588 blssm 14589 blres 14602 mscl 14633 xmscl 14634 xmsge0 14635 xmseq0 14636 xmssym 14637 mopnin 14655 sincosq1sgn 14961 sincosq2sgn 14962 sincosq3sgn 14963 sincosq4sgn 14964 lgsneg1 15141 |
Copyright terms: Public domain | W3C validator |