| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an3 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3.1 | ⊢ (𝜑 → 𝜃) |
| syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3an3.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 2 | 3exp 1204 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syl7 69 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜏))) |
| 5 | 4 | 3imp 1195 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3an3b 1287 syl3an3br 1290 vtoclgft 2814 ovmpox 6051 ovmpoga 6052 nnanq0 7525 apreim 8630 apsub1 8669 divassap 8717 ltmul2 8883 xleadd1 9950 xltadd2 9952 elfzo 10224 fzodcel 10228 subcn2 11476 mulcn2 11477 ndvdsp1 12097 gcddiv 12186 lcmneg 12242 mulgaddcom 13276 lspsnss 13960 rnglidlrng 14054 neipsm 14390 opnneip 14395 hmeof1o2 14544 blcntrps 14651 blcntr 14652 neibl 14727 blnei 14728 metss 14730 rpcxpsub 15144 cxpcom 15174 rplogbzexp 15190 |
| Copyright terms: Public domain | W3C validator |