| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an3 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3.1 | ⊢ (𝜑 → 𝜃) |
| syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3an3.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 2 | 3exp 1204 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syl7 69 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜏))) |
| 5 | 4 | 3imp 1195 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3an3b 1287 syl3an3br 1290 vtoclgft 2814 ovmpox 6055 ovmpoga 6056 nnanq0 7542 apreim 8647 apsub1 8686 divassap 8734 ltmul2 8900 xleadd1 9967 xltadd2 9969 elfzo 10241 fzodcel 10245 subcn2 11493 mulcn2 11494 ndvdsp1 12114 gcddiv 12211 lcmneg 12267 mulgaddcom 13352 lspsnss 14036 rnglidlrng 14130 neipsm 14474 opnneip 14479 hmeof1o2 14628 blcntrps 14735 blcntr 14736 neibl 14811 blnei 14812 metss 14814 rpcxpsub 15228 cxpcom 15258 rplogbzexp 15274 |
| Copyright terms: Public domain | W3C validator |