| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an3 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3.1 | ⊢ (𝜑 → 𝜃) |
| syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3an3.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 2 | 3exp 1204 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syl7 69 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜏))) |
| 5 | 4 | 3imp 1195 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3an3b 1287 syl3an3br 1290 vtoclgft 2814 ovmpox 6055 ovmpoga 6056 nnanq0 7544 apreim 8649 apsub1 8688 divassap 8736 ltmul2 8902 xleadd1 9969 xltadd2 9971 elfzo 10243 fzodcel 10247 subcn2 11495 mulcn2 11496 ndvdsp1 12116 gcddiv 12213 lcmneg 12269 mulgaddcom 13354 lspsnss 14038 rnglidlrng 14132 neipsm 14498 opnneip 14503 hmeof1o2 14652 blcntrps 14759 blcntr 14760 neibl 14835 blnei 14836 metss 14838 rpcxpsub 15252 cxpcom 15282 rplogbzexp 15298 |
| Copyright terms: Public domain | W3C validator |