ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an3 GIF version

Theorem syl3an3 1284
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3.1 (𝜑𝜃)
syl3an3.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3 ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3
StepHypRef Expression
1 syl3an3.1 . . 3 (𝜑𝜃)
2 syl3an3.2 . . . 4 ((𝜓𝜒𝜃) → 𝜏)
323exp 1204 . . 3 (𝜓 → (𝜒 → (𝜃𝜏)))
41, 3syl7 69 . 2 (𝜓 → (𝜒 → (𝜑𝜏)))
543imp 1195 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  syl3an3b  1287  syl3an3br  1290  vtoclgft  2811  ovmpox  6048  ovmpoga  6049  nnanq0  7520  apreim  8624  apsub1  8663  divassap  8711  ltmul2  8877  xleadd1  9944  xltadd2  9946  elfzo  10218  fzodcel  10222  subcn2  11457  mulcn2  11458  ndvdsp1  12076  gcddiv  12159  lcmneg  12215  mulgaddcom  13219  lspsnss  13903  rnglidlrng  13997  neipsm  14333  opnneip  14338  hmeof1o2  14487  blcntrps  14594  blcntr  14595  neibl  14670  blnei  14671  metss  14673  rpcxpsub  15084  cxpcom  15112  rplogbzexp  15127
  Copyright terms: Public domain W3C validator