ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an3 GIF version

Theorem syl3an3 1284
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3.1 (𝜑𝜃)
syl3an3.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3 ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3
StepHypRef Expression
1 syl3an3.1 . . 3 (𝜑𝜃)
2 syl3an3.2 . . . 4 ((𝜓𝜒𝜃) → 𝜏)
323exp 1204 . . 3 (𝜓 → (𝜒 → (𝜃𝜏)))
41, 3syl7 69 . 2 (𝜓 → (𝜒 → (𝜑𝜏)))
543imp 1195 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  syl3an3b  1287  syl3an3br  1290  vtoclgft  2814  ovmpox  6055  ovmpoga  6056  nnanq0  7544  apreim  8649  apsub1  8688  divassap  8736  ltmul2  8902  xleadd1  9969  xltadd2  9971  elfzo  10243  fzodcel  10247  subcn2  11495  mulcn2  11496  ndvdsp1  12116  gcddiv  12213  lcmneg  12269  mulgaddcom  13354  lspsnss  14038  rnglidlrng  14132  neipsm  14498  opnneip  14503  hmeof1o2  14652  blcntrps  14759  blcntr  14760  neibl  14835  blnei  14836  metss  14838  rpcxpsub  15252  cxpcom  15282  rplogbzexp  15298
  Copyright terms: Public domain W3C validator