Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3an3 | GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3.1 | ⊢ (𝜑 → 𝜃) |
syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | syl3an3.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
3 | 2 | 3exp 1192 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
4 | 1, 3 | syl7 69 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜏))) |
5 | 4 | 3imp 1183 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: syl3an3b 1266 syl3an3br 1269 vtoclgft 2776 ovmpox 5970 ovmpoga 5971 nnanq0 7399 apreim 8501 apsub1 8540 divassap 8586 ltmul2 8751 xleadd1 9811 xltadd2 9813 elfzo 10084 fzodcel 10087 subcn2 11252 mulcn2 11253 ndvdsp1 11869 gcddiv 11952 lcmneg 12006 neipsm 12794 opnneip 12799 hmeof1o2 12948 blcntrps 13055 blcntr 13056 neibl 13131 blnei 13132 metss 13134 rpcxpsub 13469 cxpcom 13497 rplogbzexp 13512 |
Copyright terms: Public domain | W3C validator |