![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an3 | GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3.1 | ⊢ (𝜑 → 𝜃) |
syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | syl3an3.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
3 | 2 | 3exp 1204 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
4 | 1, 3 | syl7 69 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜏))) |
5 | 4 | 3imp 1195 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syl3an3b 1287 syl3an3br 1290 vtoclgft 2810 ovmpox 6047 ovmpoga 6048 nnanq0 7518 apreim 8622 apsub1 8661 divassap 8709 ltmul2 8875 xleadd1 9941 xltadd2 9943 elfzo 10215 fzodcel 10219 subcn2 11454 mulcn2 11455 ndvdsp1 12073 gcddiv 12156 lcmneg 12212 mulgaddcom 13216 lspsnss 13900 rnglidlrng 13994 neipsm 14322 opnneip 14327 hmeof1o2 14476 blcntrps 14583 blcntr 14584 neibl 14659 blnei 14660 metss 14662 rpcxpsub 15043 cxpcom 15071 rplogbzexp 15086 |
Copyright terms: Public domain | W3C validator |