| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an3 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3.1 | ⊢ (𝜑 → 𝜃) |
| syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3an3.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 2 | 3exp 1204 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syl7 69 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜏))) |
| 5 | 4 | 3imp 1195 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl3an3b 1287 syl3an3br 1290 vtoclgft 2814 ovmpox 6052 ovmpoga 6053 nnanq0 7527 apreim 8632 apsub1 8671 divassap 8719 ltmul2 8885 xleadd1 9952 xltadd2 9954 elfzo 10226 fzodcel 10230 subcn2 11478 mulcn2 11479 ndvdsp1 12099 gcddiv 12196 lcmneg 12252 mulgaddcom 13286 lspsnss 13970 rnglidlrng 14064 neipsm 14400 opnneip 14405 hmeof1o2 14554 blcntrps 14661 blcntr 14662 neibl 14737 blnei 14738 metss 14740 rpcxpsub 15154 cxpcom 15184 rplogbzexp 15200 |
| Copyright terms: Public domain | W3C validator |