Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3an3 | GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3.1 | ⊢ (𝜑 → 𝜃) |
syl3an3.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | syl3an3.2 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
3 | 2 | 3exp 1197 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
4 | 1, 3 | syl7 69 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜏))) |
5 | 4 | 3imp 1188 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: syl3an3b 1271 syl3an3br 1274 vtoclgft 2780 ovmpox 5981 ovmpoga 5982 nnanq0 7420 apreim 8522 apsub1 8561 divassap 8607 ltmul2 8772 xleadd1 9832 xltadd2 9834 elfzo 10105 fzodcel 10108 subcn2 11274 mulcn2 11275 ndvdsp1 11891 gcddiv 11974 lcmneg 12028 neipsm 12948 opnneip 12953 hmeof1o2 13102 blcntrps 13209 blcntr 13210 neibl 13285 blnei 13286 metss 13288 rpcxpsub 13623 cxpcom 13651 rplogbzexp 13666 |
Copyright terms: Public domain | W3C validator |