ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  irrmul GIF version

Theorem irrmul 9130
Description: The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
irrmul ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ))

Proof of Theorem irrmul
StepHypRef Expression
1 eldif 3008 . . 3 (𝐴 ∈ (ℝ ∖ ℚ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ))
2 qre 9108 . . . . . . 7 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
3 remulcl 7468 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
42, 3sylan2 280 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℝ)
54ad2ant2r 493 . . . . 5 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℝ)
6 qdivcl 9126 . . . . . . . . . . . . 13 (((𝐴 · 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ)
763expb 1144 . . . . . . . . . . . 12 (((𝐴 · 𝐵) ∈ ℚ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ)
87expcom 114 . . . . . . . . . . 11 ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℚ → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ))
98adantl 271 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℚ → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ))
10 recn 7473 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
11103ad2ant1 964 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
12 qcn 9117 . . . . . . . . . . . . . 14 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
13123ad2ant2 965 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
14 simp3 945 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
15 0z 8759 . . . . . . . . . . . . . . . . 17 0 ∈ ℤ
16 zq 9109 . . . . . . . . . . . . . . . . 17 (0 ∈ ℤ → 0 ∈ ℚ)
1715, 16ax-mp 7 . . . . . . . . . . . . . . . 16 0 ∈ ℚ
18 qapne 9122 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐵 # 0 ↔ 𝐵 ≠ 0))
1917, 18mpan2 416 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℚ → (𝐵 # 0 ↔ 𝐵 ≠ 0))
20193ad2ant2 965 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐵 # 0 ↔ 𝐵 ≠ 0))
2114, 20mpbird 165 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 # 0)
2211, 13, 21divcanap4d 8261 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
23223expb 1144 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
2423eleq1d 2156 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (((𝐴 · 𝐵) / 𝐵) ∈ ℚ ↔ 𝐴 ∈ ℚ))
259, 24sylibd 147 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℚ → 𝐴 ∈ ℚ))
2625con3d 596 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 · 𝐵) ∈ ℚ))
2726ex 113 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 · 𝐵) ∈ ℚ)))
2827com23 77 . . . . . 6 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ → ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ¬ (𝐴 · 𝐵) ∈ ℚ)))
2928imp31 252 . . . . 5 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ¬ (𝐴 · 𝐵) ∈ ℚ)
305, 29jca 300 . . . 4 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
31303impb 1139 . . 3 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
321, 31syl3an1b 1210 . 2 ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
33 eldif 3008 . 2 ((𝐴 · 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
3432, 33sylibr 132 1 ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 924   = wceq 1289  wcel 1438  wne 2255  cdif 2996   class class class wbr 3845  (class class class)co 5652  cc 7346  cr 7347  0cc0 7348   · cmul 7353   # cap 8056   / cdiv 8137  cz 8748  cq 9102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-po 4123  df-iso 4124  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-n0 8672  df-z 8749  df-q 9103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator