![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > irrmul | GIF version |
Description: The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). For a similar theorem with irrational in place of not rational, see irrmulap 9716. (Contributed by NM, 7-Nov-2008.) |
Ref | Expression |
---|---|
irrmul | ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3163 | . . 3 ⊢ (𝐴 ∈ (ℝ ∖ ℚ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ)) | |
2 | qre 9693 | . . . . . . 7 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℝ) | |
3 | remulcl 8002 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
4 | 2, 3 | sylan2 286 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℝ) |
5 | 4 | ad2ant2r 509 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℝ) |
6 | qdivcl 9711 | . . . . . . . . . . . . 13 ⊢ (((𝐴 · 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ) | |
7 | 6 | 3expb 1206 | . . . . . . . . . . . 12 ⊢ (((𝐴 · 𝐵) ∈ ℚ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ) |
8 | 7 | expcom 116 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℚ → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ)) |
9 | 8 | adantl 277 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℚ → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ)) |
10 | recn 8007 | . . . . . . . . . . . . . 14 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
11 | 10 | 3ad2ant1 1020 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ) |
12 | qcn 9702 | . . . . . . . . . . . . . 14 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
13 | 12 | 3ad2ant2 1021 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ) |
14 | simp3 1001 | . . . . . . . . . . . . . 14 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
15 | 0z 9331 | . . . . . . . . . . . . . . . . 17 ⊢ 0 ∈ ℤ | |
16 | zq 9694 | . . . . . . . . . . . . . . . . 17 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
17 | 15, 16 | ax-mp 5 | . . . . . . . . . . . . . . . 16 ⊢ 0 ∈ ℚ |
18 | qapne 9707 | . . . . . . . . . . . . . . . 16 ⊢ ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐵 # 0 ↔ 𝐵 ≠ 0)) | |
19 | 17, 18 | mpan2 425 | . . . . . . . . . . . . . . 15 ⊢ (𝐵 ∈ ℚ → (𝐵 # 0 ↔ 𝐵 ≠ 0)) |
20 | 19 | 3ad2ant2 1021 | . . . . . . . . . . . . . 14 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐵 # 0 ↔ 𝐵 ≠ 0)) |
21 | 14, 20 | mpbird 167 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 # 0) |
22 | 11, 13, 21 | divcanap4d 8817 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
23 | 22 | 3expb 1206 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
24 | 23 | eleq1d 2262 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (((𝐴 · 𝐵) / 𝐵) ∈ ℚ ↔ 𝐴 ∈ ℚ)) |
25 | 9, 24 | sylibd 149 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℚ → 𝐴 ∈ ℚ)) |
26 | 25 | con3d 632 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 · 𝐵) ∈ ℚ)) |
27 | 26 | ex 115 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 · 𝐵) ∈ ℚ))) |
28 | 27 | com23 78 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ → ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ¬ (𝐴 · 𝐵) ∈ ℚ))) |
29 | 28 | imp31 256 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ¬ (𝐴 · 𝐵) ∈ ℚ) |
30 | 5, 29 | jca 306 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ)) |
31 | 30 | 3impb 1201 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ)) |
32 | 1, 31 | syl3an1b 1285 | . 2 ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ)) |
33 | eldif 3163 | . 2 ⊢ ((𝐴 · 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ)) | |
34 | 32, 33 | sylibr 134 | 1 ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∖ cdif 3151 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 · cmul 7879 # cap 8602 / cdiv 8693 ℤcz 9320 ℚcq 9687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-n0 9244 df-z 9321 df-q 9688 |
This theorem is referenced by: 2logb9irrALT 15147 |
Copyright terms: Public domain | W3C validator |