| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > irrmul | GIF version | ||
| Description: The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). For a similar theorem with irrational in place of not rational, see irrmulap 9722. (Contributed by NM, 7-Nov-2008.) | 
| Ref | Expression | 
|---|---|
| irrmul | ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eldif 3166 | . . 3 ⊢ (𝐴 ∈ (ℝ ∖ ℚ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ)) | |
| 2 | qre 9699 | . . . . . . 7 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℝ) | |
| 3 | remulcl 8007 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 4 | 2, 3 | sylan2 286 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℝ) | 
| 5 | 4 | ad2ant2r 509 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℝ) | 
| 6 | qdivcl 9717 | . . . . . . . . . . . . 13 ⊢ (((𝐴 · 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ) | |
| 7 | 6 | 3expb 1206 | . . . . . . . . . . . 12 ⊢ (((𝐴 · 𝐵) ∈ ℚ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ) | 
| 8 | 7 | expcom 116 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℚ → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ)) | 
| 9 | 8 | adantl 277 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℚ → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ)) | 
| 10 | recn 8012 | . . . . . . . . . . . . . 14 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 11 | 10 | 3ad2ant1 1020 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ) | 
| 12 | qcn 9708 | . . . . . . . . . . . . . 14 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
| 13 | 12 | 3ad2ant2 1021 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ) | 
| 14 | simp3 1001 | . . . . . . . . . . . . . 14 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
| 15 | 0z 9337 | . . . . . . . . . . . . . . . . 17 ⊢ 0 ∈ ℤ | |
| 16 | zq 9700 | . . . . . . . . . . . . . . . . 17 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . . . . . . . . . . 16 ⊢ 0 ∈ ℚ | 
| 18 | qapne 9713 | . . . . . . . . . . . . . . . 16 ⊢ ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐵 # 0 ↔ 𝐵 ≠ 0)) | |
| 19 | 17, 18 | mpan2 425 | . . . . . . . . . . . . . . 15 ⊢ (𝐵 ∈ ℚ → (𝐵 # 0 ↔ 𝐵 ≠ 0)) | 
| 20 | 19 | 3ad2ant2 1021 | . . . . . . . . . . . . . 14 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐵 # 0 ↔ 𝐵 ≠ 0)) | 
| 21 | 14, 20 | mpbird 167 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 # 0) | 
| 22 | 11, 13, 21 | divcanap4d 8823 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | 
| 23 | 22 | 3expb 1206 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | 
| 24 | 23 | eleq1d 2265 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (((𝐴 · 𝐵) / 𝐵) ∈ ℚ ↔ 𝐴 ∈ ℚ)) | 
| 25 | 9, 24 | sylibd 149 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℚ → 𝐴 ∈ ℚ)) | 
| 26 | 25 | con3d 632 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 · 𝐵) ∈ ℚ)) | 
| 27 | 26 | ex 115 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 · 𝐵) ∈ ℚ))) | 
| 28 | 27 | com23 78 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ → ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ¬ (𝐴 · 𝐵) ∈ ℚ))) | 
| 29 | 28 | imp31 256 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ¬ (𝐴 · 𝐵) ∈ ℚ) | 
| 30 | 5, 29 | jca 306 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ)) | 
| 31 | 30 | 3impb 1201 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ)) | 
| 32 | 1, 31 | syl3an1b 1285 | . 2 ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ)) | 
| 33 | eldif 3166 | . 2 ⊢ ((𝐴 · 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ)) | |
| 34 | 32, 33 | sylibr 134 | 1 ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∖ cdif 3154 class class class wbr 4033 (class class class)co 5922 ℂcc 7877 ℝcr 7878 0cc0 7879 · cmul 7884 # cap 8608 / cdiv 8699 ℤcz 9326 ℚcq 9693 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-n0 9250 df-z 9327 df-q 9694 | 
| This theorem is referenced by: 2logb9irrALT 15210 | 
| Copyright terms: Public domain | W3C validator |