ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  irrmul GIF version

Theorem irrmul 9439
Description: The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
irrmul ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ))

Proof of Theorem irrmul
StepHypRef Expression
1 eldif 3080 . . 3 (𝐴 ∈ (ℝ ∖ ℚ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ))
2 qre 9417 . . . . . . 7 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
3 remulcl 7748 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
42, 3sylan2 284 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℝ)
54ad2ant2r 500 . . . . 5 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℝ)
6 qdivcl 9435 . . . . . . . . . . . . 13 (((𝐴 · 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ)
763expb 1182 . . . . . . . . . . . 12 (((𝐴 · 𝐵) ∈ ℚ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ)
87expcom 115 . . . . . . . . . . 11 ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℚ → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ))
98adantl 275 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℚ → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ))
10 recn 7753 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
11103ad2ant1 1002 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
12 qcn 9426 . . . . . . . . . . . . . 14 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
13123ad2ant2 1003 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
14 simp3 983 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
15 0z 9065 . . . . . . . . . . . . . . . . 17 0 ∈ ℤ
16 zq 9418 . . . . . . . . . . . . . . . . 17 (0 ∈ ℤ → 0 ∈ ℚ)
1715, 16ax-mp 5 . . . . . . . . . . . . . . . 16 0 ∈ ℚ
18 qapne 9431 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐵 # 0 ↔ 𝐵 ≠ 0))
1917, 18mpan2 421 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℚ → (𝐵 # 0 ↔ 𝐵 ≠ 0))
20193ad2ant2 1003 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐵 # 0 ↔ 𝐵 ≠ 0))
2114, 20mpbird 166 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 # 0)
2211, 13, 21divcanap4d 8556 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
23223expb 1182 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
2423eleq1d 2208 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (((𝐴 · 𝐵) / 𝐵) ∈ ℚ ↔ 𝐴 ∈ ℚ))
259, 24sylibd 148 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℚ → 𝐴 ∈ ℚ))
2625con3d 620 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 · 𝐵) ∈ ℚ))
2726ex 114 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 · 𝐵) ∈ ℚ)))
2827com23 78 . . . . . 6 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ → ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ¬ (𝐴 · 𝐵) ∈ ℚ)))
2928imp31 254 . . . . 5 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ¬ (𝐴 · 𝐵) ∈ ℚ)
305, 29jca 304 . . . 4 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
31303impb 1177 . . 3 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
321, 31syl3an1b 1252 . 2 ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
33 eldif 3080 . 2 ((𝐴 · 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
3432, 33sylibr 133 1 ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wne 2308  cdif 3068   class class class wbr 3929  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620   · cmul 7625   # cap 8343   / cdiv 8432  cz 9054  cq 9411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-q 9412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator