ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxaddlem GIF version

Theorem xrmaxaddlem 11223
Description: Lemma for xrmaxadd 11224. The case where 𝐴 is real. (Contributed by Jim Kingdon, 11-May-2023.)
Assertion
Ref Expression
xrmaxaddlem ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))

Proof of Theorem xrmaxaddlem
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 9754 . . 3 ((𝑓 ∈ ℝ*𝑔 ∈ ℝ*) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 275 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑓 ∈ ℝ*𝑔 ∈ ℝ*)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 rexr 7965 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 simp1 992 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
5 simp2 993 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
6 simp3 994 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
7 xrmaxcl 11215 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
85, 6, 7syl2anc 409 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
94, 8xaddcld 9841 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
103, 9syl3an1 1266 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
11 elpri 3606 . . . . 5 (𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} → (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶)))
12 simpr 109 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 = (𝐴 +𝑒 𝐵))
13 xrmax1sup 11216 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
145, 6, 13syl2anc 409 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
15 xleadd2a 9831 . . . . . . . . 9 (((𝐵 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ*) ∧ 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < )) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
165, 8, 4, 14, 15syl31anc 1236 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
1716adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
1812, 17eqbrtrd 4011 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
19 simpr 109 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 = (𝐴 +𝑒 𝐶))
20 xrmax2sup 11217 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
215, 6, 20syl2anc 409 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
22 xleadd2a 9831 . . . . . . . . 9 (((𝐶 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ*) ∧ 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < )) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
236, 8, 4, 21, 22syl31anc 1236 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2423adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2519, 24eqbrtrd 4011 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2618, 25jaodan 792 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶))) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2711, 26sylan2 284 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
284, 5xaddcld 9841 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
2928adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
3012, 29eqeltrd 2247 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 ∈ ℝ*)
314, 6xaddcld 9841 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
3231adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
3319, 32eqeltrd 2247 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 ∈ ℝ*)
3430, 33jaodan 792 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶))) → 𝑥 ∈ ℝ*)
3511, 34sylan2 284 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → 𝑥 ∈ ℝ*)
369adantr 274 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
37 xrlenlt 7984 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*) → (𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥))
3835, 36, 37syl2anc 409 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → (𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥))
3927, 38mpbid 146 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥)
403, 39syl3anl1 1281 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥)
4133ad2ant1 1013 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
4241adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐴 ∈ ℝ*)
4342adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐴 ∈ ℝ*)
44 simpl2 996 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐵 ∈ ℝ*)
4544adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐵 ∈ ℝ*)
4643, 45xaddcld 9841 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
47 prid1g 3687 . . . . 5 ((𝐴 +𝑒 𝐵) ∈ ℝ* → (𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
4846, 47syl 14 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
49 simpr 109 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝑥 +𝑒 -𝑒𝐴) < 𝐵)
50 simprl 526 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝑥 ∈ ℝ*)
5142xnegcld 9812 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 ∈ ℝ*)
5250, 51xaddcld 9841 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
5352adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
54 simpl1 995 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐴 ∈ ℝ)
5554adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐴 ∈ ℝ)
56 xltadd1 9833 . . . . . . 7 (((𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴)))
5753, 45, 55, 56syl3anc 1233 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴)))
5849, 57mpbid 146 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴))
59 xnpcan 9829 . . . . . . 7 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
6050, 54, 59syl2anc 409 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
6160adantr 274 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
62 xaddcom 9818 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐴 +𝑒 𝐵))
6345, 43, 62syl2anc 409 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐵 +𝑒 𝐴) = (𝐴 +𝑒 𝐵))
6458, 61, 633brtr3d 4020 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝑥 < (𝐴 +𝑒 𝐵))
65 breq2 3993 . . . . 5 (𝑦 = (𝐴 +𝑒 𝐵) → (𝑥 < 𝑦𝑥 < (𝐴 +𝑒 𝐵)))
6665rspcev 2834 . . . 4 (((𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} ∧ 𝑥 < (𝐴 +𝑒 𝐵)) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
6748, 64, 66syl2anc 409 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
6854adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐴 ∈ ℝ)
6968, 3syl 14 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐴 ∈ ℝ*)
70 simpl3 997 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐶 ∈ ℝ*)
7170adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐶 ∈ ℝ*)
7269, 71xaddcld 9841 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
73 prid2g 3688 . . . . 5 ((𝐴 +𝑒 𝐶) ∈ ℝ* → (𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
7472, 73syl 14 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
75 simpr 109 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝑥 +𝑒 -𝑒𝐴) < 𝐶)
7652adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
77 xltadd1 9833 . . . . . . 7 (((𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐶 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴)))
7876, 71, 68, 77syl3anc 1233 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐶 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴)))
7975, 78mpbid 146 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴))
8060adantr 274 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
81 xaddcom 9818 . . . . . 6 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐶 +𝑒 𝐴) = (𝐴 +𝑒 𝐶))
8271, 69, 81syl2anc 409 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐶 +𝑒 𝐴) = (𝐴 +𝑒 𝐶))
8379, 80, 823brtr3d 4020 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝑥 < (𝐴 +𝑒 𝐶))
84 breq2 3993 . . . . 5 (𝑦 = (𝐴 +𝑒 𝐶) → (𝑥 < 𝑦𝑥 < (𝐴 +𝑒 𝐶)))
8584rspcev 2834 . . . 4 (((𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} ∧ 𝑥 < (𝐴 +𝑒 𝐶)) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
8674, 83, 85syl2anc 409 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
87 simprr 527 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
8810adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
89 rexneg 9787 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
90893ad2ant1 1013 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐴 = -𝐴)
9190adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 = -𝐴)
9254renegcld 8299 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝐴 ∈ ℝ)
9391, 92eqeltrd 2247 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 ∈ ℝ)
94 xltadd1 9833 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ) → (𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴)))
9550, 88, 93, 94syl3anc 1233 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴)))
9687, 95mpbid 146 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴))
973, 8syl3an1 1266 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
9897adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
99 xaddcom 9818 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) = (sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴))
10042, 98, 99syl2anc 409 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) = (sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴))
101100oveq1d 5868 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴) = ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴))
10296, 101breqtrd 4015 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴))
103 xpncan 9828 . . . . . 6 ((sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ) → ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴) = sup({𝐵, 𝐶}, ℝ*, < ))
10498, 54, 103syl2anc 409 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴) = sup({𝐵, 𝐶}, ℝ*, < ))
105102, 104breqtrd 4015 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ))
106 xrltmaxsup 11220 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ* ∧ (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*) → ((𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ) ↔ ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶)))
10744, 70, 52, 106syl3anc 1233 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ) ↔ ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶)))
108105, 107mpbid 146 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶))
10967, 86, 108mpjaodan 793 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
1102, 10, 40, 109eqsuptid 6974 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  wrex 2449  {cpr 3584   class class class wbr 3989  (class class class)co 5853  supcsup 6959  cr 7773  *cxr 7953   < clt 7954  cle 7955  -cneg 8091  -𝑒cxne 9726   +𝑒 cxad 9727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  xrmaxadd  11224
  Copyright terms: Public domain W3C validator