ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxaddlem GIF version

Theorem xrmaxaddlem 11779
Description: Lemma for xrmaxadd 11780. The case where 𝐴 is real. (Contributed by Jim Kingdon, 11-May-2023.)
Assertion
Ref Expression
xrmaxaddlem ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))

Proof of Theorem xrmaxaddlem
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 10001 . . 3 ((𝑓 ∈ ℝ*𝑔 ∈ ℝ*) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 277 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑓 ∈ ℝ*𝑔 ∈ ℝ*)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 rexr 8200 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 simp1 1021 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
5 simp2 1022 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
6 simp3 1023 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
7 xrmaxcl 11771 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
85, 6, 7syl2anc 411 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
94, 8xaddcld 10088 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
103, 9syl3an1 1304 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
11 elpri 3689 . . . . 5 (𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} → (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶)))
12 simpr 110 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 = (𝐴 +𝑒 𝐵))
13 xrmax1sup 11772 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
145, 6, 13syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
15 xleadd2a 10078 . . . . . . . . 9 (((𝐵 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ*) ∧ 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < )) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
165, 8, 4, 14, 15syl31anc 1274 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
1716adantr 276 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
1812, 17eqbrtrd 4105 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
19 simpr 110 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 = (𝐴 +𝑒 𝐶))
20 xrmax2sup 11773 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
215, 6, 20syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
22 xleadd2a 10078 . . . . . . . . 9 (((𝐶 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ*) ∧ 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < )) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
236, 8, 4, 21, 22syl31anc 1274 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2423adantr 276 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2519, 24eqbrtrd 4105 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2618, 25jaodan 802 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶))) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2711, 26sylan2 286 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
284, 5xaddcld 10088 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
2928adantr 276 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
3012, 29eqeltrd 2306 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 ∈ ℝ*)
314, 6xaddcld 10088 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
3231adantr 276 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
3319, 32eqeltrd 2306 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 ∈ ℝ*)
3430, 33jaodan 802 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶))) → 𝑥 ∈ ℝ*)
3511, 34sylan2 286 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → 𝑥 ∈ ℝ*)
369adantr 276 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
37 xrlenlt 8219 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*) → (𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥))
3835, 36, 37syl2anc 411 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → (𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥))
3927, 38mpbid 147 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥)
403, 39syl3anl1 1319 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥)
4133ad2ant1 1042 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
4241adantr 276 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐴 ∈ ℝ*)
4342adantr 276 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐴 ∈ ℝ*)
44 simpl2 1025 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐵 ∈ ℝ*)
4544adantr 276 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐵 ∈ ℝ*)
4643, 45xaddcld 10088 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
47 prid1g 3770 . . . . 5 ((𝐴 +𝑒 𝐵) ∈ ℝ* → (𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
4846, 47syl 14 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
49 simpr 110 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝑥 +𝑒 -𝑒𝐴) < 𝐵)
50 simprl 529 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝑥 ∈ ℝ*)
5142xnegcld 10059 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 ∈ ℝ*)
5250, 51xaddcld 10088 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
5352adantr 276 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
54 simpl1 1024 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐴 ∈ ℝ)
5554adantr 276 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐴 ∈ ℝ)
56 xltadd1 10080 . . . . . . 7 (((𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴)))
5753, 45, 55, 56syl3anc 1271 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴)))
5849, 57mpbid 147 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴))
59 xnpcan 10076 . . . . . . 7 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
6050, 54, 59syl2anc 411 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
6160adantr 276 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
62 xaddcom 10065 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐴 +𝑒 𝐵))
6345, 43, 62syl2anc 411 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐵 +𝑒 𝐴) = (𝐴 +𝑒 𝐵))
6458, 61, 633brtr3d 4114 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝑥 < (𝐴 +𝑒 𝐵))
65 breq2 4087 . . . . 5 (𝑦 = (𝐴 +𝑒 𝐵) → (𝑥 < 𝑦𝑥 < (𝐴 +𝑒 𝐵)))
6665rspcev 2907 . . . 4 (((𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} ∧ 𝑥 < (𝐴 +𝑒 𝐵)) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
6748, 64, 66syl2anc 411 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
6854adantr 276 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐴 ∈ ℝ)
6968, 3syl 14 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐴 ∈ ℝ*)
70 simpl3 1026 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐶 ∈ ℝ*)
7170adantr 276 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐶 ∈ ℝ*)
7269, 71xaddcld 10088 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
73 prid2g 3771 . . . . 5 ((𝐴 +𝑒 𝐶) ∈ ℝ* → (𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
7472, 73syl 14 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
75 simpr 110 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝑥 +𝑒 -𝑒𝐴) < 𝐶)
7652adantr 276 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
77 xltadd1 10080 . . . . . . 7 (((𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐶 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴)))
7876, 71, 68, 77syl3anc 1271 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐶 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴)))
7975, 78mpbid 147 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴))
8060adantr 276 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
81 xaddcom 10065 . . . . . 6 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐶 +𝑒 𝐴) = (𝐴 +𝑒 𝐶))
8271, 69, 81syl2anc 411 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐶 +𝑒 𝐴) = (𝐴 +𝑒 𝐶))
8379, 80, 823brtr3d 4114 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝑥 < (𝐴 +𝑒 𝐶))
84 breq2 4087 . . . . 5 (𝑦 = (𝐴 +𝑒 𝐶) → (𝑥 < 𝑦𝑥 < (𝐴 +𝑒 𝐶)))
8584rspcev 2907 . . . 4 (((𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} ∧ 𝑥 < (𝐴 +𝑒 𝐶)) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
8674, 83, 85syl2anc 411 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
87 simprr 531 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
8810adantr 276 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
89 rexneg 10034 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
90893ad2ant1 1042 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐴 = -𝐴)
9190adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 = -𝐴)
9254renegcld 8534 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝐴 ∈ ℝ)
9391, 92eqeltrd 2306 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 ∈ ℝ)
94 xltadd1 10080 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ) → (𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴)))
9550, 88, 93, 94syl3anc 1271 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴)))
9687, 95mpbid 147 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴))
973, 8syl3an1 1304 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
9897adantr 276 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
99 xaddcom 10065 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) = (sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴))
10042, 98, 99syl2anc 411 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) = (sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴))
101100oveq1d 6022 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴) = ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴))
10296, 101breqtrd 4109 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴))
103 xpncan 10075 . . . . . 6 ((sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ) → ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴) = sup({𝐵, 𝐶}, ℝ*, < ))
10498, 54, 103syl2anc 411 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴) = sup({𝐵, 𝐶}, ℝ*, < ))
105102, 104breqtrd 4109 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ))
106 xrltmaxsup 11776 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ* ∧ (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*) → ((𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ) ↔ ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶)))
10744, 70, 52, 106syl3anc 1271 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ) ↔ ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶)))
108105, 107mpbid 147 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶))
10967, 86, 108mpjaodan 803 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
1102, 10, 40, 109eqsuptid 7172 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  wrex 2509  {cpr 3667   class class class wbr 4083  (class class class)co 6007  supcsup 7157  cr 8006  *cxr 8188   < clt 8189  cle 8190  -cneg 8326  -𝑒cxne 9973   +𝑒 cxad 9974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-rp 9858  df-xneg 9976  df-xadd 9977  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518
This theorem is referenced by:  xrmaxadd  11780
  Copyright terms: Public domain W3C validator