ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxaddlem GIF version

Theorem xrmaxaddlem 11187
Description: Lemma for xrmaxadd 11188. The case where 𝐴 is real. (Contributed by Jim Kingdon, 11-May-2023.)
Assertion
Ref Expression
xrmaxaddlem ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))

Proof of Theorem xrmaxaddlem
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 9724 . . 3 ((𝑓 ∈ ℝ*𝑔 ∈ ℝ*) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 275 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑓 ∈ ℝ*𝑔 ∈ ℝ*)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 rexr 7935 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 simp1 986 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
5 simp2 987 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
6 simp3 988 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
7 xrmaxcl 11179 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
85, 6, 7syl2anc 409 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
94, 8xaddcld 9811 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
103, 9syl3an1 1260 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
11 elpri 3593 . . . . 5 (𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} → (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶)))
12 simpr 109 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 = (𝐴 +𝑒 𝐵))
13 xrmax1sup 11180 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
145, 6, 13syl2anc 409 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
15 xleadd2a 9801 . . . . . . . . 9 (((𝐵 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ*) ∧ 𝐵 ≤ sup({𝐵, 𝐶}, ℝ*, < )) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
165, 8, 4, 14, 15syl31anc 1230 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
1716adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
1812, 17eqbrtrd 3998 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
19 simpr 109 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 = (𝐴 +𝑒 𝐶))
20 xrmax2sup 11181 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
215, 6, 20syl2anc 409 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < ))
22 xleadd2a 9801 . . . . . . . . 9 (((𝐶 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ*) ∧ 𝐶 ≤ sup({𝐵, 𝐶}, ℝ*, < )) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
236, 8, 4, 21, 22syl31anc 1230 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2423adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → (𝐴 +𝑒 𝐶) ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2519, 24eqbrtrd 3998 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2618, 25jaodan 787 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶))) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
2711, 26sylan2 284 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → 𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
284, 5xaddcld 9811 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
2928adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
3012, 29eqeltrd 2241 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐵)) → 𝑥 ∈ ℝ*)
314, 6xaddcld 9811 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
3231adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
3319, 32eqeltrd 2241 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 = (𝐴 +𝑒 𝐶)) → 𝑥 ∈ ℝ*)
3430, 33jaodan 787 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 = (𝐴 +𝑒 𝐵) ∨ 𝑥 = (𝐴 +𝑒 𝐶))) → 𝑥 ∈ ℝ*)
3511, 34sylan2 284 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → 𝑥 ∈ ℝ*)
369adantr 274 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
37 xrlenlt 7954 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*) → (𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥))
3835, 36, 37syl2anc 409 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → (𝑥 ≤ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥))
3927, 38mpbid 146 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥)
403, 39syl3anl1 1275 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}) → ¬ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) < 𝑥)
4133ad2ant1 1007 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
4241adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐴 ∈ ℝ*)
4342adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐴 ∈ ℝ*)
44 simpl2 990 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐵 ∈ ℝ*)
4544adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐵 ∈ ℝ*)
4643, 45xaddcld 9811 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
47 prid1g 3674 . . . . 5 ((𝐴 +𝑒 𝐵) ∈ ℝ* → (𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
4846, 47syl 14 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
49 simpr 109 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝑥 +𝑒 -𝑒𝐴) < 𝐵)
50 simprl 521 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝑥 ∈ ℝ*)
5142xnegcld 9782 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 ∈ ℝ*)
5250, 51xaddcld 9811 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
5352adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
54 simpl1 989 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐴 ∈ ℝ)
5554adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝐴 ∈ ℝ)
56 xltadd1 9803 . . . . . . 7 (((𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴)))
5753, 45, 55, 56syl3anc 1227 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴)))
5849, 57mpbid 146 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐵 +𝑒 𝐴))
59 xnpcan 9799 . . . . . . 7 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
6050, 54, 59syl2anc 409 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
6160adantr 274 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
62 xaddcom 9788 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐴 +𝑒 𝐵))
6345, 43, 62syl2anc 409 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → (𝐵 +𝑒 𝐴) = (𝐴 +𝑒 𝐵))
6458, 61, 633brtr3d 4007 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → 𝑥 < (𝐴 +𝑒 𝐵))
65 breq2 3980 . . . . 5 (𝑦 = (𝐴 +𝑒 𝐵) → (𝑥 < 𝑦𝑥 < (𝐴 +𝑒 𝐵)))
6665rspcev 2825 . . . 4 (((𝐴 +𝑒 𝐵) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} ∧ 𝑥 < (𝐴 +𝑒 𝐵)) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
6748, 64, 66syl2anc 409 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐵) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
6854adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐴 ∈ ℝ)
6968, 3syl 14 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐴 ∈ ℝ*)
70 simpl3 991 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝐶 ∈ ℝ*)
7170adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝐶 ∈ ℝ*)
7269, 71xaddcld 9811 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
73 prid2g 3675 . . . . 5 ((𝐴 +𝑒 𝐶) ∈ ℝ* → (𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
7472, 73syl 14 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)})
75 simpr 109 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝑥 +𝑒 -𝑒𝐴) < 𝐶)
7652adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*)
77 xltadd1 9803 . . . . . . 7 (((𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐶 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴)))
7876, 71, 68, 77syl3anc 1227 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐶 ↔ ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴)))
7975, 78mpbid 146 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) < (𝐶 +𝑒 𝐴))
8060adantr 274 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ((𝑥 +𝑒 -𝑒𝐴) +𝑒 𝐴) = 𝑥)
81 xaddcom 9788 . . . . . 6 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐶 +𝑒 𝐴) = (𝐴 +𝑒 𝐶))
8271, 69, 81syl2anc 409 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → (𝐶 +𝑒 𝐴) = (𝐴 +𝑒 𝐶))
8379, 80, 823brtr3d 4007 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → 𝑥 < (𝐴 +𝑒 𝐶))
84 breq2 3980 . . . . 5 (𝑦 = (𝐴 +𝑒 𝐶) → (𝑥 < 𝑦𝑥 < (𝐴 +𝑒 𝐶)))
8584rspcev 2825 . . . 4 (((𝐴 +𝑒 𝐶) ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)} ∧ 𝑥 < (𝐴 +𝑒 𝐶)) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
8674, 83, 85syl2anc 409 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) ∧ (𝑥 +𝑒 -𝑒𝐴) < 𝐶) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
87 simprr 522 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → 𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
8810adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ*)
89 rexneg 9757 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
90893ad2ant1 1007 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐴 = -𝐴)
9190adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 = -𝐴)
9254renegcld 8269 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝐴 ∈ ℝ)
9391, 92eqeltrd 2241 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → -𝑒𝐴 ∈ ℝ)
94 xltadd1 9803 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ) → (𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴)))
9550, 88, 93, 94syl3anc 1227 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) ↔ (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴)))
9687, 95mpbid 146 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴))
973, 8syl3an1 1260 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
9897adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
99 xaddcom 9788 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) = (sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴))
10042, 98, 99syl2anc 409 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) = (sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴))
101100oveq1d 5851 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )) +𝑒 -𝑒𝐴) = ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴))
10296, 101breqtrd 4002 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴))
103 xpncan 9798 . . . . . 6 ((sup({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*𝐴 ∈ ℝ) → ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴) = sup({𝐵, 𝐶}, ℝ*, < ))
10498, 54, 103syl2anc 409 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((sup({𝐵, 𝐶}, ℝ*, < ) +𝑒 𝐴) +𝑒 -𝑒𝐴) = sup({𝐵, 𝐶}, ℝ*, < ))
105102, 104breqtrd 4002 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → (𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ))
106 xrltmaxsup 11184 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ* ∧ (𝑥 +𝑒 -𝑒𝐴) ∈ ℝ*) → ((𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ) ↔ ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶)))
10744, 70, 52, 106syl3anc 1227 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) < sup({𝐵, 𝐶}, ℝ*, < ) ↔ ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶)))
108105, 107mpbid 146 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ((𝑥 +𝑒 -𝑒𝐴) < 𝐵 ∨ (𝑥 +𝑒 -𝑒𝐴) < 𝐶))
10967, 86, 108mpjaodan 788 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*𝑥 < (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))) → ∃𝑦 ∈ {(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}𝑥 < 𝑦)
1102, 10, 40, 109eqsuptid 6953 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 967   = wceq 1342  wcel 2135  wrex 2443  {cpr 3571   class class class wbr 3976  (class class class)co 5836  supcsup 6938  cr 7743  *cxr 7923   < clt 7924  cle 7925  -cneg 8061  -𝑒cxne 9696   +𝑒 cxad 9697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-sup 6940  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-xneg 9699  df-xadd 9700  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927
This theorem is referenced by:  xrmaxadd  11188
  Copyright terms: Public domain W3C validator