ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdinn0 GIF version

Theorem lgsdinn0 14116
Description: Variation on lgsdi 14105 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdinn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))

Proof of Theorem lgsdinn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5877 . . . . . . . . 9 (𝑥 = 𝑁 → (𝐴 /L 𝑥) = (𝐴 /L 𝑁))
21oveq1d 5884 . . . . . . . 8 (𝑥 = 𝑁 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
32eqeq2d 2189 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0))))
4 sq1 10599 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
54eqeq2i 2188 . . . . . . . . . . . . . . . 16 ((𝐴↑2) = (1↑2) ↔ (𝐴↑2) = 1)
6 nn0re 9174 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7 nn0ge0 9190 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
8 1re 7947 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
9 0le1 8428 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
10 sq11 10578 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
118, 9, 10mpanr12 439 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
126, 7, 11syl2anc 411 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0 → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
1312adantr 276 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
145, 13bitr3id 194 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = 1 ↔ 𝐴 = 1))
1514biimpa 296 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → 𝐴 = 1)
1615oveq1d 5884 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 𝑥) = (1 /L 𝑥))
17 1lgs 14111 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (1 /L 𝑥) = 1)
1817ad2antlr 489 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (1 /L 𝑥) = 1)
1916, 18eqtrd 2210 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 𝑥) = 1)
2019oveq1d 5884 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = (1 · (𝐴 /L 0)))
21 nn0z 9262 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2221ad2antrr 488 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → 𝐴 ∈ ℤ)
23 0z 9253 . . . . . . . . . . . . . 14 0 ∈ ℤ
24 lgscl 14082 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 /L 0) ∈ ℤ)
2522, 23, 24sylancl 413 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) ∈ ℤ)
2625zcnd 9365 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) ∈ ℂ)
2726mulid2d 7966 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (1 · (𝐴 /L 0)) = (𝐴 /L 0))
2820, 27eqtr2d 2211 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
29 lgscl 14082 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℤ)
3021, 29sylan 283 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℤ)
3130zcnd 9365 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℂ)
3231adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 𝑥) ∈ ℂ)
3332mul01d 8340 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → ((𝐴 /L 𝑥) · 0) = 0)
3421adantr 276 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
35 lgs0 14081 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
3634, 35syl 14 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
37 ifnefalse 3545 . . . . . . . . . . . . 13 ((𝐴↑2) ≠ 1 → if((𝐴↑2) = 1, 1, 0) = 0)
3836, 37sylan9eq 2230 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 0) = 0)
3938oveq2d 5885 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑥) · 0))
4033, 39, 383eqtr4rd 2221 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
41 zsqcl 10576 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
4234, 41syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴↑2) ∈ ℤ)
43 1z 9268 . . . . . . . . . . . 12 1 ∈ ℤ
44 zdceq 9317 . . . . . . . . . . . 12 (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴↑2) = 1)
4542, 43, 44sylancl 413 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → DECID (𝐴↑2) = 1)
46 dcne 2358 . . . . . . . . . . 11 (DECID (𝐴↑2) = 1 ↔ ((𝐴↑2) = 1 ∨ (𝐴↑2) ≠ 1))
4745, 46sylib 122 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = 1 ∨ (𝐴↑2) ≠ 1))
4828, 40, 47mpjaodan 798 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
4948ralrimiva 2550 . . . . . . . 8 (𝐴 ∈ ℕ0 → ∀𝑥 ∈ ℤ (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
50493ad2ant1 1018 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑥 ∈ ℤ (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
51 simp3 999 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
523, 50, 51rspcdva 2846 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
5352adantr 276 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
54213ad2ant1 1018 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
5554, 23, 24sylancl 413 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) ∈ ℤ)
5655zcnd 9365 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) ∈ ℂ)
5756adantr 276 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) ∈ ℂ)
58 lgscl 14082 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
5954, 51, 58syl2anc 411 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
6059zcnd 9365 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℂ)
6160adantr 276 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 𝑁) ∈ ℂ)
6257, 61mulcomd 7969 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 /L 0) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
6353, 62eqtr4d 2213 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) = ((𝐴 /L 0) · (𝐴 /L 𝑁)))
64 oveq1 5876 . . . . . 6 (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁))
6551zcnd 9365 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
6665mul02d 8339 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0)
6764, 66sylan9eqr 2232 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 · 𝑁) = 0)
6867oveq2d 5885 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0))
69 simpr 110 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
7069oveq2d 5885 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 𝑀) = (𝐴 /L 0))
7170oveq1d 5884 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 0) · (𝐴 /L 𝑁)))
7263, 68, 713eqtr4d 2220 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
73 oveq2 5877 . . . . . . . 8 (𝑥 = 𝑀 → (𝐴 /L 𝑥) = (𝐴 /L 𝑀))
7473oveq1d 5884 . . . . . . 7 (𝑥 = 𝑀 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
7574eqeq2d 2189 . . . . . 6 (𝑥 = 𝑀 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0))))
76 simp2 998 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
7775, 50, 76rspcdva 2846 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
7877adantr 276 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
79 oveq2 5877 . . . . . 6 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
8076zcnd 9365 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
8180mul01d 8340 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 0) = 0)
8279, 81sylan9eqr 2232 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 · 𝑁) = 0)
8382oveq2d 5885 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0))
84 simpr 110 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0)
8584oveq2d 5885 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = (𝐴 /L 0))
8685oveq2d 5885 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
8778, 83, 863eqtr4d 2220 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
8872, 87jaodan 797 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
89 neanior 2434 . . 3 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0))
90 lgsdi 14105 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
9121, 90syl3anl1 1286 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
9289, 91sylan2br 288 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
93 zdceq 9317 . . . . 5 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
9476, 23, 93sylancl 413 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 = 0)
95 zdceq 9317 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
9651, 23, 95sylancl 413 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0)
97 dcor 935 . . . 4 (DECID 𝑀 = 0 → (DECID 𝑁 = 0 → DECID (𝑀 = 0 ∨ 𝑁 = 0)))
9894, 96, 97sylc 62 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
99 exmiddc 836 . . 3 (DECID (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
10098, 99syl 14 . 2 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
10188, 92, 100mpjaodan 798 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  w3a 978   = wceq 1353  wcel 2148  wne 2347  wral 2455  ifcif 3534   class class class wbr 4000  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   · cmul 7807  cle 7983  2c2 8959  0cn0 9165  cz 9242  cexp 10505   /L clgs 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-9 8974  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194  df-pc 12268  df-lgs 14066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator