ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdinn0 GIF version

Theorem lgsdinn0 15164
Description: Variation on lgsdi 15153 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdinn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))

Proof of Theorem lgsdinn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5926 . . . . . . . . 9 (𝑥 = 𝑁 → (𝐴 /L 𝑥) = (𝐴 /L 𝑁))
21oveq1d 5933 . . . . . . . 8 (𝑥 = 𝑁 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
32eqeq2d 2205 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0))))
4 sq1 10704 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
54eqeq2i 2204 . . . . . . . . . . . . . . . 16 ((𝐴↑2) = (1↑2) ↔ (𝐴↑2) = 1)
6 nn0re 9249 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7 nn0ge0 9265 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
8 1re 8018 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
9 0le1 8500 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
10 sq11 10683 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
118, 9, 10mpanr12 439 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
126, 7, 11syl2anc 411 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0 → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
1312adantr 276 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
145, 13bitr3id 194 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = 1 ↔ 𝐴 = 1))
1514biimpa 296 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → 𝐴 = 1)
1615oveq1d 5933 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 𝑥) = (1 /L 𝑥))
17 1lgs 15159 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (1 /L 𝑥) = 1)
1817ad2antlr 489 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (1 /L 𝑥) = 1)
1916, 18eqtrd 2226 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 𝑥) = 1)
2019oveq1d 5933 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = (1 · (𝐴 /L 0)))
21 nn0z 9337 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2221ad2antrr 488 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → 𝐴 ∈ ℤ)
23 0z 9328 . . . . . . . . . . . . . 14 0 ∈ ℤ
24 lgscl 15130 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 /L 0) ∈ ℤ)
2522, 23, 24sylancl 413 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) ∈ ℤ)
2625zcnd 9440 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) ∈ ℂ)
2726mulid2d 8038 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (1 · (𝐴 /L 0)) = (𝐴 /L 0))
2820, 27eqtr2d 2227 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
29 lgscl 15130 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℤ)
3021, 29sylan 283 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℤ)
3130zcnd 9440 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℂ)
3231adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 𝑥) ∈ ℂ)
3332mul01d 8412 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → ((𝐴 /L 𝑥) · 0) = 0)
3421adantr 276 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
35 lgs0 15129 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
3634, 35syl 14 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
37 ifnefalse 3568 . . . . . . . . . . . . 13 ((𝐴↑2) ≠ 1 → if((𝐴↑2) = 1, 1, 0) = 0)
3836, 37sylan9eq 2246 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 0) = 0)
3938oveq2d 5934 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑥) · 0))
4033, 39, 383eqtr4rd 2237 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
41 zsqcl 10681 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
4234, 41syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴↑2) ∈ ℤ)
43 1z 9343 . . . . . . . . . . . 12 1 ∈ ℤ
44 zdceq 9392 . . . . . . . . . . . 12 (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴↑2) = 1)
4542, 43, 44sylancl 413 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → DECID (𝐴↑2) = 1)
46 dcne 2375 . . . . . . . . . . 11 (DECID (𝐴↑2) = 1 ↔ ((𝐴↑2) = 1 ∨ (𝐴↑2) ≠ 1))
4745, 46sylib 122 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = 1 ∨ (𝐴↑2) ≠ 1))
4828, 40, 47mpjaodan 799 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
4948ralrimiva 2567 . . . . . . . 8 (𝐴 ∈ ℕ0 → ∀𝑥 ∈ ℤ (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
50493ad2ant1 1020 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑥 ∈ ℤ (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
51 simp3 1001 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
523, 50, 51rspcdva 2869 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
5352adantr 276 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
54213ad2ant1 1020 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
5554, 23, 24sylancl 413 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) ∈ ℤ)
5655zcnd 9440 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) ∈ ℂ)
5756adantr 276 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) ∈ ℂ)
58 lgscl 15130 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
5954, 51, 58syl2anc 411 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
6059zcnd 9440 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℂ)
6160adantr 276 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 𝑁) ∈ ℂ)
6257, 61mulcomd 8041 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 /L 0) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
6353, 62eqtr4d 2229 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) = ((𝐴 /L 0) · (𝐴 /L 𝑁)))
64 oveq1 5925 . . . . . 6 (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁))
6551zcnd 9440 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
6665mul02d 8411 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0)
6764, 66sylan9eqr 2248 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 · 𝑁) = 0)
6867oveq2d 5934 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0))
69 simpr 110 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
7069oveq2d 5934 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 𝑀) = (𝐴 /L 0))
7170oveq1d 5933 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 0) · (𝐴 /L 𝑁)))
7263, 68, 713eqtr4d 2236 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
73 oveq2 5926 . . . . . . . 8 (𝑥 = 𝑀 → (𝐴 /L 𝑥) = (𝐴 /L 𝑀))
7473oveq1d 5933 . . . . . . 7 (𝑥 = 𝑀 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
7574eqeq2d 2205 . . . . . 6 (𝑥 = 𝑀 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0))))
76 simp2 1000 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
7775, 50, 76rspcdva 2869 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
7877adantr 276 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
79 oveq2 5926 . . . . . 6 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
8076zcnd 9440 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
8180mul01d 8412 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 0) = 0)
8279, 81sylan9eqr 2248 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 · 𝑁) = 0)
8382oveq2d 5934 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0))
84 simpr 110 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0)
8584oveq2d 5934 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = (𝐴 /L 0))
8685oveq2d 5934 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
8778, 83, 863eqtr4d 2236 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
8872, 87jaodan 798 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
89 neanior 2451 . . 3 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0))
90 lgsdi 15153 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
9121, 90syl3anl1 1297 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
9289, 91sylan2br 288 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
93 zdceq 9392 . . . . 5 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
9476, 23, 93sylancl 413 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 = 0)
95 zdceq 9392 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
9651, 23, 95sylancl 413 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0)
97 dcor 937 . . . 4 (DECID 𝑀 = 0 → (DECID 𝑁 = 0 → DECID (𝑀 = 0 ∨ 𝑁 = 0)))
9894, 96, 97sylc 62 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
99 exmiddc 837 . . 3 (DECID (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
10098, 99syl 14 . 2 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
10188, 92, 100mpjaodan 799 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wne 2364  wral 2472  ifcif 3557   class class class wbr 4029  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   · cmul 7877  cle 8055  2c2 9033  0cn0 9240  cz 9317  cexp 10609   /L clgs 15113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-phi 12349  df-pc 12423  df-lgs 15114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator