Step | Hyp | Ref
| Expression |
1 | | oveq2 5849 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → (𝐴 /L 𝑥) = (𝐴 /L 𝑁)) |
2 | 1 | oveq1d 5856 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑁) · (𝐴 /L 0))) |
3 | 2 | eqeq2d 2177 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) =
((𝐴 /L
𝑁) · (𝐴 /L
0)))) |
4 | | sq1 10544 |
. . . . . . . . . . . . . . . . 17
⊢
(1↑2) = 1 |
5 | 4 | eqeq2i 2176 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴↑2) = (1↑2) ↔
(𝐴↑2) =
1) |
6 | | nn0re 9119 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
7 | | nn0ge0 9135 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) |
8 | | 1re 7894 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ |
9 | | 0le1 8375 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ≤
1 |
10 | | sq11 10523 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (1 ∈ ℝ
∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1)) |
11 | 8, 9, 10 | mpanr12 436 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) → ((𝐴↑2) = (1↑2) ↔
𝐴 = 1)) |
12 | 6, 7, 11 | syl2anc 409 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℕ0
→ ((𝐴↑2) =
(1↑2) ↔ 𝐴 =
1)) |
13 | 12 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ ((𝐴↑2) =
(1↑2) ↔ 𝐴 =
1)) |
14 | 5, 13 | bitr3id 193 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ ((𝐴↑2) = 1
↔ 𝐴 =
1)) |
15 | 14 | biimpa 294 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ 𝐴 =
1) |
16 | 15 | oveq1d 5856 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (𝐴
/L 𝑥) =
(1 /L 𝑥)) |
17 | | 1lgs 13544 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℤ → (1
/L 𝑥) =
1) |
18 | 17 | ad2antlr 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (1 /L 𝑥) = 1) |
19 | 16, 18 | eqtrd 2198 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (𝐴
/L 𝑥) =
1) |
20 | 19 | oveq1d 5856 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ ((𝐴
/L 𝑥)
· (𝐴
/L 0)) = (1 · (𝐴 /L 0))) |
21 | | nn0z 9207 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
22 | 21 | ad2antrr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ 𝐴 ∈
ℤ) |
23 | | 0z 9198 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℤ |
24 | | lgscl 13515 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 0 ∈
ℤ) → (𝐴
/L 0) ∈ ℤ) |
25 | 22, 23, 24 | sylancl 410 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (𝐴
/L 0) ∈ ℤ) |
26 | 25 | zcnd 9310 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (𝐴
/L 0) ∈ ℂ) |
27 | 26 | mulid2d 7913 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (1 · (𝐴
/L 0)) = (𝐴 /L 0)) |
28 | 20, 27 | eqtr2d 2199 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (𝐴
/L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0))) |
29 | | lgscl 13515 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈
ℤ) |
30 | 21, 29 | sylan 281 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝐴
/L 𝑥)
∈ ℤ) |
31 | 30 | zcnd 9310 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝐴
/L 𝑥)
∈ ℂ) |
32 | 31 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) ≠ 1)
→ (𝐴
/L 𝑥)
∈ ℂ) |
33 | 32 | mul01d 8287 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) ≠ 1)
→ ((𝐴
/L 𝑥)
· 0) = 0) |
34 | 21 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
35 | | lgs0 13514 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) =
if((𝐴↑2) = 1, 1,
0)) |
36 | 34, 35 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝐴
/L 0) = if((𝐴↑2) = 1, 1, 0)) |
37 | | ifnefalse 3530 |
. . . . . . . . . . . . 13
⊢ ((𝐴↑2) ≠ 1 → if((𝐴↑2) = 1, 1, 0) =
0) |
38 | 36, 37 | sylan9eq 2218 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) ≠ 1)
→ (𝐴
/L 0) = 0) |
39 | 38 | oveq2d 5857 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) ≠ 1)
→ ((𝐴
/L 𝑥)
· (𝐴
/L 0)) = ((𝐴 /L 𝑥) · 0)) |
40 | 33, 39, 38 | 3eqtr4rd 2209 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) ≠ 1)
→ (𝐴
/L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0))) |
41 | | zsqcl 10521 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈
ℤ) |
42 | 34, 41 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝐴↑2) ∈
ℤ) |
43 | | 1z 9213 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
44 | | zdceq 9262 |
. . . . . . . . . . . 12
⊢ (((𝐴↑2) ∈ ℤ ∧ 1
∈ ℤ) → DECID (𝐴↑2) = 1) |
45 | 42, 43, 44 | sylancl 410 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ DECID (𝐴↑2) = 1) |
46 | | dcne 2346 |
. . . . . . . . . . 11
⊢
(DECID (𝐴↑2) = 1 ↔ ((𝐴↑2) = 1 ∨ (𝐴↑2) ≠ 1)) |
47 | 45, 46 | sylib 121 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ ((𝐴↑2) = 1 ∨
(𝐴↑2) ≠
1)) |
48 | 28, 40, 47 | mpjaodan 788 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝐴
/L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0))) |
49 | 48 | ralrimiva 2538 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ0
→ ∀𝑥 ∈
ℤ (𝐴
/L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0))) |
50 | 49 | 3ad2ant1 1008 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ ∀𝑥 ∈
ℤ (𝐴
/L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0))) |
51 | | simp3 989 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ 𝑁 ∈
ℤ) |
52 | 3, 50, 51 | rspcdva 2834 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0))) |
53 | 52 | adantr 274 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L 0) =
((𝐴 /L
𝑁) · (𝐴 /L
0))) |
54 | 21 | 3ad2ant1 1008 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
55 | 54, 23, 24 | sylancl 410 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 0) ∈ ℤ) |
56 | 55 | zcnd 9310 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 0) ∈ ℂ) |
57 | 56 | adantr 274 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L 0) ∈
ℂ) |
58 | | lgscl 13515 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈
ℤ) |
59 | 54, 51, 58 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 𝑁)
∈ ℤ) |
60 | 59 | zcnd 9310 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 𝑁)
∈ ℂ) |
61 | 60 | adantr 274 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L 𝑁) ∈
ℂ) |
62 | 57, 61 | mulcomd 7916 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → ((𝐴 /L 0)
· (𝐴
/L 𝑁)) =
((𝐴 /L
𝑁) · (𝐴 /L
0))) |
63 | 53, 62 | eqtr4d 2201 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L 0) =
((𝐴 /L 0)
· (𝐴
/L 𝑁))) |
64 | | oveq1 5848 |
. . . . . 6
⊢ (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁)) |
65 | 51 | zcnd 9310 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ 𝑁 ∈
ℂ) |
66 | 65 | mul02d 8286 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (0 · 𝑁) =
0) |
67 | 64, 66 | sylan9eqr 2220 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝑀 · 𝑁) = 0) |
68 | 67 | oveq2d 5857 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0)) |
69 | | simpr 109 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → 𝑀 = 0) |
70 | 69 | oveq2d 5857 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L 𝑀) = (𝐴 /L 0)) |
71 | 70 | oveq1d 5856 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 0) · (𝐴 /L 𝑁))) |
72 | 63, 68, 71 | 3eqtr4d 2208 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |
73 | | oveq2 5849 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (𝐴 /L 𝑥) = (𝐴 /L 𝑀)) |
74 | 73 | oveq1d 5856 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑀) · (𝐴 /L 0))) |
75 | 74 | eqeq2d 2177 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) =
((𝐴 /L
𝑀) · (𝐴 /L
0)))) |
76 | | simp2 988 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ 𝑀 ∈
ℤ) |
77 | 75, 50, 76 | rspcdva 2834 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0))) |
78 | 77 | adantr 274 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → (𝐴 /L 0) =
((𝐴 /L
𝑀) · (𝐴 /L
0))) |
79 | | oveq2 5849 |
. . . . . 6
⊢ (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0)) |
80 | 76 | zcnd 9310 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ 𝑀 ∈
ℂ) |
81 | 80 | mul01d 8287 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝑀 · 0) =
0) |
82 | 79, 81 | sylan9eqr 2220 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → (𝑀 · 𝑁) = 0) |
83 | 82 | oveq2d 5857 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0)) |
84 | | simpr 109 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → 𝑁 = 0) |
85 | 84 | oveq2d 5857 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → (𝐴 /L 𝑁) = (𝐴 /L 0)) |
86 | 85 | oveq2d 5857 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 0))) |
87 | 78, 83, 86 | 3eqtr4d 2208 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |
88 | 72, 87 | jaodan 787 |
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |
89 | | neanior 2422 |
. . 3
⊢ ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) |
90 | | lgsdi 13538 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |
91 | 21, 90 | syl3anl1 1276 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |
92 | 89, 91 | sylan2br 286 |
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ ¬ (𝑀 = 0 ∨
𝑁 = 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |
93 | | zdceq 9262 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑀 = 0) |
94 | 76, 23, 93 | sylancl 410 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ DECID 𝑀 = 0) |
95 | | zdceq 9262 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
96 | 51, 23, 95 | sylancl 410 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ DECID 𝑁 = 0) |
97 | | dcor 925 |
. . . 4
⊢
(DECID 𝑀 = 0 → (DECID 𝑁 = 0 → DECID
(𝑀 = 0 ∨ 𝑁 = 0))) |
98 | 94, 96, 97 | sylc 62 |
. . 3
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ DECID (𝑀 = 0 ∨ 𝑁 = 0)) |
99 | | exmiddc 826 |
. . 3
⊢
(DECID (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0))) |
100 | 98, 99 | syl 14 |
. 2
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0))) |
101 | 88, 92, 100 | mpjaodan 788 |
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L (𝑀
· 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |