ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdinn0 GIF version

Theorem lgsdinn0 15600
Description: Variation on lgsdi 15589 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdinn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))

Proof of Theorem lgsdinn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5965 . . . . . . . . 9 (𝑥 = 𝑁 → (𝐴 /L 𝑥) = (𝐴 /L 𝑁))
21oveq1d 5972 . . . . . . . 8 (𝑥 = 𝑁 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
32eqeq2d 2218 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0))))
4 sq1 10800 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
54eqeq2i 2217 . . . . . . . . . . . . . . . 16 ((𝐴↑2) = (1↑2) ↔ (𝐴↑2) = 1)
6 nn0re 9324 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7 nn0ge0 9340 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
8 1re 8091 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
9 0le1 8574 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
10 sq11 10779 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
118, 9, 10mpanr12 439 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
126, 7, 11syl2anc 411 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0 → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
1312adantr 276 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
145, 13bitr3id 194 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = 1 ↔ 𝐴 = 1))
1514biimpa 296 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → 𝐴 = 1)
1615oveq1d 5972 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 𝑥) = (1 /L 𝑥))
17 1lgs 15595 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (1 /L 𝑥) = 1)
1817ad2antlr 489 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (1 /L 𝑥) = 1)
1916, 18eqtrd 2239 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 𝑥) = 1)
2019oveq1d 5972 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = (1 · (𝐴 /L 0)))
21 nn0z 9412 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2221ad2antrr 488 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → 𝐴 ∈ ℤ)
23 0z 9403 . . . . . . . . . . . . . 14 0 ∈ ℤ
24 lgscl 15566 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 /L 0) ∈ ℤ)
2522, 23, 24sylancl 413 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) ∈ ℤ)
2625zcnd 9516 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) ∈ ℂ)
2726mulid2d 8111 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (1 · (𝐴 /L 0)) = (𝐴 /L 0))
2820, 27eqtr2d 2240 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
29 lgscl 15566 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℤ)
3021, 29sylan 283 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℤ)
3130zcnd 9516 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℂ)
3231adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 𝑥) ∈ ℂ)
3332mul01d 8485 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → ((𝐴 /L 𝑥) · 0) = 0)
3421adantr 276 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
35 lgs0 15565 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
3634, 35syl 14 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
37 ifnefalse 3586 . . . . . . . . . . . . 13 ((𝐴↑2) ≠ 1 → if((𝐴↑2) = 1, 1, 0) = 0)
3836, 37sylan9eq 2259 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 0) = 0)
3938oveq2d 5973 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑥) · 0))
4033, 39, 383eqtr4rd 2250 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
41 zsqcl 10777 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
4234, 41syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴↑2) ∈ ℤ)
43 1z 9418 . . . . . . . . . . . 12 1 ∈ ℤ
44 zdceq 9468 . . . . . . . . . . . 12 (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴↑2) = 1)
4542, 43, 44sylancl 413 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → DECID (𝐴↑2) = 1)
46 dcne 2388 . . . . . . . . . . 11 (DECID (𝐴↑2) = 1 ↔ ((𝐴↑2) = 1 ∨ (𝐴↑2) ≠ 1))
4745, 46sylib 122 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = 1 ∨ (𝐴↑2) ≠ 1))
4828, 40, 47mpjaodan 800 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
4948ralrimiva 2580 . . . . . . . 8 (𝐴 ∈ ℕ0 → ∀𝑥 ∈ ℤ (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
50493ad2ant1 1021 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑥 ∈ ℤ (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
51 simp3 1002 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
523, 50, 51rspcdva 2886 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
5352adantr 276 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
54213ad2ant1 1021 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
5554, 23, 24sylancl 413 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) ∈ ℤ)
5655zcnd 9516 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) ∈ ℂ)
5756adantr 276 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) ∈ ℂ)
58 lgscl 15566 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
5954, 51, 58syl2anc 411 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
6059zcnd 9516 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℂ)
6160adantr 276 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 𝑁) ∈ ℂ)
6257, 61mulcomd 8114 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 /L 0) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
6353, 62eqtr4d 2242 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) = ((𝐴 /L 0) · (𝐴 /L 𝑁)))
64 oveq1 5964 . . . . . 6 (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁))
6551zcnd 9516 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
6665mul02d 8484 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0)
6764, 66sylan9eqr 2261 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 · 𝑁) = 0)
6867oveq2d 5973 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0))
69 simpr 110 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
7069oveq2d 5973 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 𝑀) = (𝐴 /L 0))
7170oveq1d 5972 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 0) · (𝐴 /L 𝑁)))
7263, 68, 713eqtr4d 2249 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
73 oveq2 5965 . . . . . . . 8 (𝑥 = 𝑀 → (𝐴 /L 𝑥) = (𝐴 /L 𝑀))
7473oveq1d 5972 . . . . . . 7 (𝑥 = 𝑀 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
7574eqeq2d 2218 . . . . . 6 (𝑥 = 𝑀 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0))))
76 simp2 1001 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
7775, 50, 76rspcdva 2886 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
7877adantr 276 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
79 oveq2 5965 . . . . . 6 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
8076zcnd 9516 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
8180mul01d 8485 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 0) = 0)
8279, 81sylan9eqr 2261 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 · 𝑁) = 0)
8382oveq2d 5973 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0))
84 simpr 110 . . . . . 6 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0)
8584oveq2d 5973 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = (𝐴 /L 0))
8685oveq2d 5973 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
8778, 83, 863eqtr4d 2249 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
8872, 87jaodan 799 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
89 neanior 2464 . . 3 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0))
90 lgsdi 15589 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
9121, 90syl3anl1 1298 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
9289, 91sylan2br 288 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
93 zdceq 9468 . . . . 5 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
9476, 23, 93sylancl 413 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 = 0)
95 zdceq 9468 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
9651, 23, 95sylancl 413 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0)
97 dcor 938 . . . 4 (DECID 𝑀 = 0 → (DECID 𝑁 = 0 → DECID (𝑀 = 0 ∨ 𝑁 = 0)))
9894, 96, 97sylc 62 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
99 exmiddc 838 . . 3 (DECID (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
10098, 99syl 14 . 2 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
10188, 92, 100mpjaodan 800 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  wne 2377  wral 2485  ifcif 3575   class class class wbr 4051  (class class class)co 5957  cc 7943  cr 7944  0cc0 7945  1c1 7946   · cmul 7950  cle 8128  2c2 9107  0cn0 9315  cz 9392  cexp 10705   /L clgs 15549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-2o 6516  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-proddc 11937  df-dvds 12174  df-gcd 12350  df-prm 12505  df-phi 12608  df-pc 12683  df-lgs 15550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator