![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syld3an2 | GIF version |
Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
Ref | Expression |
---|---|
syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld3an2.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | 3com23 1209 | . . 3 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → 𝜓) |
3 | syld3an2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
4 | 3 | 3com23 1209 | . . 3 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜓) → 𝜏) |
5 | 2, 4 | syld3an3 1283 | . 2 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → 𝜏) |
6 | 5 | 3com23 1209 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: nppcan2 8191 nnncan 8195 nnncan2 8197 ltdivmul 8836 ledivmul 8837 ltdiv23 8852 lediv23 8853 dvdssub2 11845 dvdsgcdb 12017 lcmdvdsb 12087 ressabsg 12538 mulginvcom 13014 lspssp 13495 rpdivcxp 14472 |
Copyright terms: Public domain | W3C validator |