![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syld3an2 | GIF version |
Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
Ref | Expression |
---|---|
syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld3an2.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | 3com23 1210 | . . 3 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → 𝜓) |
3 | syld3an2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
4 | 3 | 3com23 1210 | . . 3 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜓) → 𝜏) |
5 | 2, 4 | syld3an3 1293 | . 2 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → 𝜏) |
6 | 5 | 3com23 1210 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 981 |
This theorem is referenced by: nppcan2 8202 nnncan 8206 nnncan2 8208 ltdivmul 8847 ledivmul 8848 ltdiv23 8863 lediv23 8864 dvdssub2 11856 dvdsgcdb 12028 lcmdvdsb 12098 ressabsg 12550 mulginvcom 13048 lspssp 13649 rpdivcxp 14685 |
Copyright terms: Public domain | W3C validator |