| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an2 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld3an2.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3com23 1211 | . . 3 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → 𝜓) |
| 3 | syld3an2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | 3com23 1211 | . . 3 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜓) → 𝜏) |
| 5 | 2, 4 | syld3an3 1294 | . 2 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → 𝜏) |
| 6 | 5 | 3com23 1211 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: nppcan2 8274 nnncan 8278 nnncan2 8280 ltdivmul 8920 ledivmul 8921 ltdiv23 8936 lediv23 8937 dvdssub2 12017 dvdsgcdb 12205 lcmdvdsb 12277 ressabsg 12779 mulginvcom 13353 lspssp 14035 rpdivcxp 15231 |
| Copyright terms: Public domain | W3C validator |