ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syld3an2 GIF version

Theorem syld3an2 1318
Description: A syllogism inference. (Contributed by NM, 20-May-2007.)
Hypotheses
Ref Expression
syld3an2.1 ((𝜑𝜒𝜃) → 𝜓)
syld3an2.2 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syld3an2 ((𝜑𝜒𝜃) → 𝜏)

Proof of Theorem syld3an2
StepHypRef Expression
1 syld3an2.1 . . . 4 ((𝜑𝜒𝜃) → 𝜓)
213com23 1233 . . 3 ((𝜑𝜃𝜒) → 𝜓)
3 syld3an2.2 . . . 4 ((𝜑𝜓𝜃) → 𝜏)
433com23 1233 . . 3 ((𝜑𝜃𝜓) → 𝜏)
52, 4syld3an3 1316 . 2 ((𝜑𝜃𝜒) → 𝜏)
653com23 1233 1 ((𝜑𝜒𝜃) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  nppcan2  8373  nnncan  8377  nnncan2  8379  ltdivmul  9019  ledivmul  9020  ltdiv23  9035  lediv23  9036  pfxtrcfv  11220  dvdssub2  12341  dvdsgcdb  12529  lcmdvdsb  12601  ressabsg  13104  mulginvcom  13679  lspssp  14361  rpdivcxp  15579
  Copyright terms: Public domain W3C validator