ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syld3an2 GIF version

Theorem syld3an2 1297
Description: A syllogism inference. (Contributed by NM, 20-May-2007.)
Hypotheses
Ref Expression
syld3an2.1 ((𝜑𝜒𝜃) → 𝜓)
syld3an2.2 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syld3an2 ((𝜑𝜒𝜃) → 𝜏)

Proof of Theorem syld3an2
StepHypRef Expression
1 syld3an2.1 . . . 4 ((𝜑𝜒𝜃) → 𝜓)
213com23 1212 . . 3 ((𝜑𝜃𝜒) → 𝜓)
3 syld3an2.2 . . . 4 ((𝜑𝜓𝜃) → 𝜏)
433com23 1212 . . 3 ((𝜑𝜃𝜓) → 𝜏)
52, 4syld3an3 1295 . 2 ((𝜑𝜃𝜒) → 𝜏)
653com23 1212 1 ((𝜑𝜒𝜃) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  nppcan2  8323  nnncan  8327  nnncan2  8329  ltdivmul  8969  ledivmul  8970  ltdiv23  8985  lediv23  8986  pfxtrcfv  11169  dvdssub2  12221  dvdsgcdb  12409  lcmdvdsb  12481  ressabsg  12983  mulginvcom  13558  lspssp  14240  rpdivcxp  15458
  Copyright terms: Public domain W3C validator