ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.13dc GIF version

Theorem pm3.13dc 948
Description: Theorem *3.13 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.14 743, holds for all propositions. (Contributed by Jim Kingdon, 22-Apr-2018.)
Assertion
Ref Expression
pm3.13dc (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))))

Proof of Theorem pm3.13dc
StepHypRef Expression
1 dcn 832 . . 3 (DECID 𝜑DECID ¬ 𝜑)
2 dcn 832 . . 3 (DECID 𝜓DECID ¬ 𝜓)
3 dcor 924 . . 3 (DECID ¬ 𝜑 → (DECID ¬ 𝜓DECID𝜑 ∨ ¬ 𝜓)))
41, 2, 3syl2im 38 . 2 (DECID 𝜑 → (DECID 𝜓DECID𝜑 ∨ ¬ 𝜓)))
5 pm3.11dc 946 . 2 (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑𝜓))))
6 con1dc 846 . 2 (DECID𝜑 ∨ ¬ 𝜓) → ((¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑𝜓)) → (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))))
74, 5, 6syl6c 66 1 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator