| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpdd | GIF version | ||
| Description: A nested modus ponens deduction. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | a2d 26 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpid 42 mpdi 43 syld 45 syl6c 66 mpteqb 5724 oprabid 6032 nnmordi 6660 nnmord 6661 brecop 6770 findcard2 7047 findcard2s 7048 ordiso2 7198 zindd 9561 ccatopth2 11244 cau3lem 11620 climcau 11853 dvdsabseq 12353 znrrg 14618 metrest 15174 bj-charfunr 16131 |
| Copyright terms: Public domain | W3C validator |