| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpdd | GIF version | ||
| Description: A nested modus ponens deduction. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | a2d 26 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpid 42 mpdi 43 syld 45 syl6c 66 mpteqb 5683 oprabid 5989 nnmordi 6615 nnmord 6616 brecop 6725 findcard2 7001 findcard2s 7002 ordiso2 7152 zindd 9511 ccatopth2 11193 cau3lem 11500 climcau 11733 dvdsabseq 12233 znrrg 14497 metrest 15053 bj-charfunr 15884 |
| Copyright terms: Public domain | W3C validator |