ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpdd GIF version

Theorem mpdd 41
Description: A nested modus ponens deduction. (Contributed by NM, 12-Dec-2004.)
Hypotheses
Ref Expression
mpdd.1 (𝜑 → (𝜓𝜒))
mpdd.2 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
mpdd (𝜑 → (𝜓𝜃))

Proof of Theorem mpdd
StepHypRef Expression
1 mpdd.1 . 2 (𝜑 → (𝜓𝜒))
2 mpdd.2 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
32a2d 26 . 2 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
41, 3mpd 13 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  mpid  42  mpdi  43  syld  45  syl6c  66  mpteqb  5586  oprabid  5885  nnmordi  6495  nnmord  6496  brecop  6603  findcard2  6867  findcard2s  6868  ordiso2  7012  zindd  9330  cau3lem  11078  climcau  11310  dvdsabseq  11807  metrest  13300  bj-charfunr  13845
  Copyright terms: Public domain W3C validator