ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpdd GIF version

Theorem mpdd 41
Description: A nested modus ponens deduction. (Contributed by NM, 12-Dec-2004.)
Hypotheses
Ref Expression
mpdd.1 (𝜑 → (𝜓𝜒))
mpdd.2 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
mpdd (𝜑 → (𝜓𝜃))

Proof of Theorem mpdd
StepHypRef Expression
1 mpdd.1 . 2 (𝜑 → (𝜓𝜒))
2 mpdd.2 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
32a2d 26 . 2 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
41, 3mpd 13 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  mpid  42  mpdi  43  syld  45  syl6c  66  mpteqb  5724  oprabid  6032  nnmordi  6660  nnmord  6661  brecop  6770  findcard2  7047  findcard2s  7048  ordiso2  7198  zindd  9561  ccatopth2  11244  cau3lem  11620  climcau  11853  dvdsabseq  12353  znrrg  14618  metrest  15174  bj-charfunr  16131
  Copyright terms: Public domain W3C validator