![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpdd | GIF version |
Description: A nested modus ponens deduction. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
3 | 2 | a2d 26 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpid 42 mpdi 43 syld 45 syl6c 66 mpteqb 5648 oprabid 5950 nnmordi 6569 nnmord 6570 brecop 6679 findcard2 6945 findcard2s 6946 ordiso2 7094 zindd 9435 cau3lem 11258 climcau 11490 dvdsabseq 11989 znrrg 14148 metrest 14674 bj-charfunr 15302 |
Copyright terms: Public domain | W3C validator |