ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpdd GIF version

Theorem mpdd 41
Description: A nested modus ponens deduction. (Contributed by NM, 12-Dec-2004.)
Hypotheses
Ref Expression
mpdd.1 (𝜑 → (𝜓𝜒))
mpdd.2 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
mpdd (𝜑 → (𝜓𝜃))

Proof of Theorem mpdd
StepHypRef Expression
1 mpdd.1 . 2 (𝜑 → (𝜓𝜒))
2 mpdd.2 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
32a2d 26 . 2 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
41, 3mpd 13 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7
This theorem is referenced by:  mpid  42  mpdi  43  syld  45  syl6c  66  mpteqb  5463  oprabid  5755  nnmordi  6364  nnmord  6365  brecop  6471  findcard2  6734  findcard2s  6735  ordiso2  6870  zindd  9067  cau3lem  10772  climcau  11002  dvdsabseq  11387  metrest  12489
  Copyright terms: Public domain W3C validator