Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpdd | GIF version |
Description: A nested modus ponens deduction. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
3 | 2 | a2d 26 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpid 42 mpdi 43 syld 45 syl6c 66 mpteqb 5576 oprabid 5874 nnmordi 6484 nnmord 6485 brecop 6591 findcard2 6855 findcard2s 6856 ordiso2 7000 zindd 9309 cau3lem 11056 climcau 11288 dvdsabseq 11785 metrest 13146 bj-charfunr 13692 |
Copyright terms: Public domain | W3C validator |