| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpdd | GIF version | ||
| Description: A nested modus ponens deduction. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | a2d 26 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpid 42 mpdi 43 syld 45 syl6c 66 mpteqb 5664 oprabid 5966 nnmordi 6592 nnmord 6593 brecop 6702 findcard2 6968 findcard2s 6969 ordiso2 7119 zindd 9473 cau3lem 11344 climcau 11577 dvdsabseq 12077 znrrg 14340 metrest 14896 bj-charfunr 15610 |
| Copyright terms: Public domain | W3C validator |