ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcbi GIF version

Theorem dcbi 936
Description: An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcbi (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))

Proof of Theorem dcbi
StepHypRef Expression
1 dcim 841 . . 3 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
2 dcim 841 . . . 4 (DECID 𝜓 → (DECID 𝜑DECID (𝜓𝜑)))
32com12 30 . . 3 (DECID 𝜑 → (DECID 𝜓DECID (𝜓𝜑)))
4 dcan2 934 . . 3 (DECID (𝜑𝜓) → (DECID (𝜓𝜑) → DECID ((𝜑𝜓) ∧ (𝜓𝜑))))
51, 3, 4syl6c 66 . 2 (DECID 𝜑 → (DECID 𝜓DECID ((𝜑𝜓) ∧ (𝜓𝜑))))
6 dfbi2 388 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
76dcbii 840 . 2 (DECID (𝜑𝜓) ↔ DECID ((𝜑𝜓) ∧ (𝜓𝜑)))
85, 7imbitrrdi 162 1 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by:  xor3dc  1387  pm5.15dc  1389  bilukdc  1396  xordidc  1399
  Copyright terms: Public domain W3C validator