| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbi | GIF version | ||
| Description: An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) |
| Ref | Expression |
|---|---|
| dcbi | ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcim 842 | . . 3 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 → 𝜓))) | |
| 2 | dcim 842 | . . . 4 ⊢ (DECID 𝜓 → (DECID 𝜑 → DECID (𝜓 → 𝜑))) | |
| 3 | 2 | com12 30 | . . 3 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜓 → 𝜑))) |
| 4 | dcan 935 | . . . 4 ⊢ ((DECID (𝜑 → 𝜓) ∧ DECID (𝜓 → 𝜑)) → DECID ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 5 | 4 | ex 115 | . . 3 ⊢ (DECID (𝜑 → 𝜓) → (DECID (𝜓 → 𝜑) → DECID ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)))) |
| 6 | 1, 3, 5 | syl6c 66 | . 2 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)))) |
| 7 | dfbi2 388 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 8 | 7 | dcbii 841 | . 2 ⊢ (DECID (𝜑 ↔ 𝜓) ↔ DECID ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 9 | 6, 8 | imbitrrdi 162 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ↔ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: xor3dc 1398 pm5.15dc 1400 bilukdc 1407 xordidc 1410 |
| Copyright terms: Public domain | W3C validator |