Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcbi | GIF version |
Description: An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) |
Ref | Expression |
---|---|
dcbi | ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ↔ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcim 831 | . . 3 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 → 𝜓))) | |
2 | dcim 831 | . . . 4 ⊢ (DECID 𝜓 → (DECID 𝜑 → DECID (𝜓 → 𝜑))) | |
3 | 2 | com12 30 | . . 3 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜓 → 𝜑))) |
4 | dcan2 924 | . . 3 ⊢ (DECID (𝜑 → 𝜓) → (DECID (𝜓 → 𝜑) → DECID ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)))) | |
5 | 1, 3, 4 | syl6c 66 | . 2 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)))) |
6 | dfbi2 386 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
7 | 6 | dcbii 830 | . 2 ⊢ (DECID (𝜑 ↔ 𝜓) ↔ DECID ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
8 | 5, 7 | syl6ibr 161 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ↔ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: xor3dc 1377 pm5.15dc 1379 bilukdc 1386 xordidc 1389 |
Copyright terms: Public domain | W3C validator |