Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpsyl | GIF version |
Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
mpsyl.1 | ⊢ 𝜑 |
mpsyl.2 | ⊢ (𝜓 → 𝜒) |
mpsyl.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
mpsyl | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpsyl.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) |
3 | mpsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
4 | mpsyl.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: relcnvtr 5104 relresfld 5114 relcoi1 5116 funco 5209 foimacnv 5431 fvi 5524 isoini2 5766 ovidig 5935 smores2 6238 tfrlem5 6258 snnen2og 6801 phpm 6807 fict 6810 infnfi 6837 isinfinf 6839 exmidpw 6850 difinfinf 7039 enumct 7053 exmidfodomrlemr 7131 exmidfodomrlemrALT 7132 isumz 11279 fsumsersdc 11285 isumclim 11311 isumclim3 11313 zprodap0 11471 alzdvds 11738 zsupcl 11826 infssuzex 11828 gcddvds 11838 dvdslegcd 11839 ennnfonelemrn 12131 ctinf 12142 strle1g 12251 metrest 12877 dvef 13059 bj-charfunbi 13357 pw1nct 13546 nnsf 13548 exmidsbthrlem 13564 |
Copyright terms: Public domain | W3C validator |