| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpsyl | GIF version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| mpsyl.1 | ⊢ 𝜑 |
| mpsyl.2 | ⊢ (𝜓 → 𝜒) |
| mpsyl.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| mpsyl | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | mpsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 4 | mpsyl.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: snssg 3769 relcnvtr 5207 relresfld 5217 relcoi1 5219 funco 5316 foimacnv 5547 fvi 5643 isoini2 5895 ovidig 6070 smores2 6387 tfrlem5 6407 snnen2og 6963 phpm 6969 fict 6972 infnfi 6999 isinfinf 7001 exmidpw 7012 difinfinf 7210 enumct 7224 exmidfodomrlemr 7317 exmidfodomrlemrALT 7318 zsupcl 10381 infssuzex 10383 isumz 11744 fsumsersdc 11750 isumclim 11776 isumclim3 11778 zprodap0 11936 alzdvds 12209 bitsfzolem 12309 gcddvds 12328 dvdslegcd 12329 pclemub 12654 ennnfonelemj0 12816 ennnfonelemg 12818 ennnfonelemrn 12834 ctinf 12845 strle1g 12982 fnpr2ob 13216 metrest 15022 dvef 15243 bj-charfunbi 15821 pw1nct 16014 nnsf 16016 exmidsbthrlem 16035 |
| Copyright terms: Public domain | W3C validator |