| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpsyl | GIF version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| mpsyl.1 | ⊢ 𝜑 |
| mpsyl.2 | ⊢ (𝜓 → 𝜒) |
| mpsyl.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| mpsyl | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | mpsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 4 | mpsyl.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: snssg 3781 relcnvtr 5224 relresfld 5234 relcoi1 5236 funco 5334 foimacnv 5566 fvi 5664 isoini2 5916 ovidig 6093 smores2 6410 tfrlem5 6430 snnen2og 6988 phpm 6995 fict 6998 infnfi 7025 isinfinf 7027 exmidpw 7038 difinfinf 7236 enumct 7250 exmidfodomrlemr 7348 exmidfodomrlemrALT 7349 zsupcl 10418 infssuzex 10420 pfxccatin12lem3 11230 isumz 11866 fsumsersdc 11872 isumclim 11898 isumclim3 11900 zprodap0 12058 alzdvds 12331 bitsfzolem 12431 gcddvds 12450 dvdslegcd 12451 pclemub 12776 ennnfonelemj0 12938 ennnfonelemg 12940 ennnfonelemrn 12956 ctinf 12967 strle1g 13105 fnpr2ob 13339 metrest 15145 dvef 15366 umgrnloop2 15914 bj-charfunbi 16084 pw1nct 16280 nnsf 16282 exmidsbthrlem 16301 |
| Copyright terms: Public domain | W3C validator |