| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpsyl | GIF version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) | 
| Ref | Expression | 
|---|---|
| mpsyl.1 | ⊢ 𝜑 | 
| mpsyl.2 | ⊢ (𝜓 → 𝜒) | 
| mpsyl.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) | 
| Ref | Expression | 
|---|---|
| mpsyl | ⊢ (𝜓 → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpsyl.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) | 
| 3 | mpsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 4 | mpsyl.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝜓 → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 | 
| This theorem is referenced by: snssg 3756 relcnvtr 5189 relresfld 5199 relcoi1 5201 funco 5298 foimacnv 5522 fvi 5618 isoini2 5866 ovidig 6040 smores2 6352 tfrlem5 6372 snnen2og 6920 phpm 6926 fict 6929 infnfi 6956 isinfinf 6958 exmidpw 6969 difinfinf 7167 enumct 7181 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 zsupcl 10321 infssuzex 10323 isumz 11554 fsumsersdc 11560 isumclim 11586 isumclim3 11588 zprodap0 11746 alzdvds 12019 bitsfzolem 12118 gcddvds 12130 dvdslegcd 12131 pclemub 12456 ennnfonelemj0 12618 ennnfonelemg 12620 ennnfonelemrn 12636 ctinf 12647 strle1g 12784 fnpr2ob 12983 metrest 14742 dvef 14963 bj-charfunbi 15457 pw1nct 15647 nnsf 15649 exmidsbthrlem 15666 | 
| Copyright terms: Public domain | W3C validator |