Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpsyl | GIF version |
Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
mpsyl.1 | ⊢ 𝜑 |
mpsyl.2 | ⊢ (𝜓 → 𝜒) |
mpsyl.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
mpsyl | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpsyl.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) |
3 | mpsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
4 | mpsyl.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: relcnvtr 5122 relresfld 5132 relcoi1 5134 funco 5227 foimacnv 5449 fvi 5542 isoini2 5786 ovidig 5955 smores2 6258 tfrlem5 6278 snnen2og 6821 phpm 6827 fict 6830 infnfi 6857 isinfinf 6859 exmidpw 6870 difinfinf 7062 enumct 7076 exmidfodomrlemr 7154 exmidfodomrlemrALT 7155 isumz 11326 fsumsersdc 11332 isumclim 11358 isumclim3 11360 zprodap0 11518 alzdvds 11788 zsupcl 11876 infssuzex 11878 gcddvds 11892 dvdslegcd 11893 pclemub 12215 ennnfonelemrn 12348 ctinf 12359 strle1g 12480 metrest 13106 dvef 13288 bj-charfunbi 13653 pw1nct 13843 nnsf 13845 exmidsbthrlem 13861 |
Copyright terms: Public domain | W3C validator |