![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpsyl | GIF version |
Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
mpsyl.1 | ⊢ 𝜑 |
mpsyl.2 | ⊢ (𝜓 → 𝜒) |
mpsyl.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
mpsyl | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpsyl.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) |
3 | mpsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
4 | mpsyl.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: snssg 3752 relcnvtr 5185 relresfld 5195 relcoi1 5197 funco 5294 foimacnv 5518 fvi 5614 isoini2 5862 ovidig 6036 smores2 6347 tfrlem5 6367 snnen2og 6915 phpm 6921 fict 6924 infnfi 6951 isinfinf 6953 exmidpw 6964 difinfinf 7160 enumct 7174 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 isumz 11532 fsumsersdc 11538 isumclim 11564 isumclim3 11566 zprodap0 11724 alzdvds 11996 zsupcl 12084 infssuzex 12086 gcddvds 12100 dvdslegcd 12101 pclemub 12425 ennnfonelemj0 12558 ennnfonelemg 12560 ennnfonelemrn 12576 ctinf 12587 strle1g 12724 fnpr2ob 12923 metrest 14674 dvef 14873 bj-charfunbi 15303 pw1nct 15493 nnsf 15495 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |