| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpsyl | GIF version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| mpsyl.1 | ⊢ 𝜑 |
| mpsyl.2 | ⊢ (𝜓 → 𝜒) |
| mpsyl.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| mpsyl | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | mpsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 4 | mpsyl.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: snssg 3757 relcnvtr 5190 relresfld 5200 relcoi1 5202 funco 5299 foimacnv 5525 fvi 5621 isoini2 5869 ovidig 6044 smores2 6361 tfrlem5 6381 snnen2og 6929 phpm 6935 fict 6938 infnfi 6965 isinfinf 6967 exmidpw 6978 difinfinf 7176 enumct 7190 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 zsupcl 10340 infssuzex 10342 isumz 11573 fsumsersdc 11579 isumclim 11605 isumclim3 11607 zprodap0 11765 alzdvds 12038 bitsfzolem 12138 gcddvds 12157 dvdslegcd 12158 pclemub 12483 ennnfonelemj0 12645 ennnfonelemg 12647 ennnfonelemrn 12663 ctinf 12674 strle1g 12811 fnpr2ob 13044 metrest 14850 dvef 15071 bj-charfunbi 15565 pw1nct 15758 nnsf 15760 exmidsbthrlem 15779 |
| Copyright terms: Public domain | W3C validator |