| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpsyl | GIF version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| mpsyl.1 | ⊢ 𝜑 |
| mpsyl.2 | ⊢ (𝜓 → 𝜒) |
| mpsyl.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| mpsyl | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | mpsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 4 | mpsyl.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: snssg 3802 relcnvtr 5248 relresfld 5258 relcoi1 5260 funco 5358 foimacnv 5592 fvi 5693 isoini2 5949 ovidig 6128 smores2 6446 tfrlem5 6466 snnen2og 7028 phpm 7035 fict 7038 infnfi 7065 isinfinf 7067 exmidpw 7078 difinfinf 7276 enumct 7290 exmidfodomrlemr 7388 exmidfodomrlemrALT 7389 zsupcl 10459 infssuzex 10461 pfxccatin12lem3 11272 isumz 11908 fsumsersdc 11914 isumclim 11940 isumclim3 11942 zprodap0 12100 alzdvds 12373 bitsfzolem 12473 gcddvds 12492 dvdslegcd 12493 pclemub 12818 ennnfonelemj0 12980 ennnfonelemg 12982 ennnfonelemrn 12998 ctinf 13009 strle1g 13147 fnpr2ob 13381 metrest 15188 dvef 15409 umgrnloop2 15957 bj-charfunbi 16198 pw1nct 16398 nnsf 16401 exmidsbthrlem 16420 |
| Copyright terms: Public domain | W3C validator |