Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpsyl | GIF version |
Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
mpsyl.1 | ⊢ 𝜑 |
mpsyl.2 | ⊢ (𝜓 → 𝜒) |
mpsyl.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
mpsyl | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpsyl.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) |
3 | mpsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
4 | mpsyl.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: relcnvtr 5130 relresfld 5140 relcoi1 5142 funco 5238 foimacnv 5460 fvi 5553 isoini2 5798 ovidig 5970 smores2 6273 tfrlem5 6293 snnen2og 6837 phpm 6843 fict 6846 infnfi 6873 isinfinf 6875 exmidpw 6886 difinfinf 7078 enumct 7092 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 isumz 11352 fsumsersdc 11358 isumclim 11384 isumclim3 11386 zprodap0 11544 alzdvds 11814 zsupcl 11902 infssuzex 11904 gcddvds 11918 dvdslegcd 11919 pclemub 12241 ennnfonelemrn 12374 ctinf 12385 strle1g 12508 metrest 13300 dvef 13482 bj-charfunbi 13846 pw1nct 14036 nnsf 14038 exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |