Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylanr1 | GIF version |
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
Ref | Expression |
---|---|
sylanr1.1 | ⊢ (𝜑 → 𝜒) |
sylanr1.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
sylanr1 | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr1.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | anim1i 338 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜃)) |
3 | sylanr1.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
4 | 2, 3 | sylan2 284 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: adantrll 476 adantrlr 477 pczpre 12225 blsscls2 13093 |
Copyright terms: Public domain | W3C validator |