| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sylanr1 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) | 
| Ref | Expression | 
|---|---|
| sylanr1.1 | ⊢ (𝜑 → 𝜒) | 
| sylanr1.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | 
| Ref | Expression | 
|---|---|
| sylanr1 | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylanr1.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | anim1i 340 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜃)) | 
| 3 | sylanr1.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: adantrll 484 adantrlr 485 pczpre 12466 blsscls2 14729 | 
| Copyright terms: Public domain | W3C validator |