Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adantrlr | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
adantrlr | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜏) ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylanr1 402 | 1 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜏) ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: genpdisj 7485 ltexprlemdisj 7568 addcanprlemu 7577 addsrmo 7705 mulsrmo 7706 |
Copyright terms: Public domain | W3C validator |