ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantrlr GIF version

Theorem adantrlr 485
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
adantrlr ((𝜑 ∧ ((𝜓𝜏) ∧ 𝜒)) → 𝜃)

Proof of Theorem adantrlr
StepHypRef Expression
1 simpl 109 . 2 ((𝜓𝜏) → 𝜓)
2 adantr2.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylanr1 404 1 ((𝜑 ∧ ((𝜓𝜏) ∧ 𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  genpdisj  7524  ltexprlemdisj  7607  addcanprlemu  7616  addsrmo  7744  mulsrmo  7745
  Copyright terms: Public domain W3C validator