Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylanl2 | GIF version |
Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
Ref | Expression |
---|---|
sylanl2.1 | ⊢ (𝜑 → 𝜒) |
sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | anim2i 340 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜒)) |
3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylan 281 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: mpanlr1 437 adantlrl 474 adantlrr 475 cnegexlem3 8035 mulsub 8259 divsubdivap 8584 modqcyc2 10241 lcmneg 11931 |
Copyright terms: Public domain | W3C validator |