Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylanr2 | GIF version |
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
Ref | Expression |
---|---|
sylanr2.1 | ⊢ (𝜑 → 𝜃) |
sylanr2.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
sylanr2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr2.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | anim2i 342 | . 2 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜃)) |
3 | sylanr2.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: adantrrl 486 adantrrr 487 1stconst 6212 2ndconst 6213 ltexprlemopl 7575 ltexprlemopu 7577 mulsub 8332 fzsubel 10028 expsubap 10536 tgcl 13115 |
Copyright terms: Public domain | W3C validator |