ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylanr2 GIF version

Theorem sylanr2 403
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.)
Hypotheses
Ref Expression
sylanr2.1 (𝜑𝜃)
sylanr2.2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
sylanr2 ((𝜓 ∧ (𝜒𝜑)) → 𝜏)

Proof of Theorem sylanr2
StepHypRef Expression
1 sylanr2.1 . . 3 (𝜑𝜃)
21anim2i 340 . 2 ((𝜒𝜑) → (𝜒𝜃))
3 sylanr2.2 . 2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
42, 3sylan2 284 1 ((𝜓 ∧ (𝜒𝜑)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  adantrrl  478  adantrrr  479  1stconst  6189  2ndconst  6190  ltexprlemopl  7542  ltexprlemopu  7544  mulsub  8299  fzsubel  9995  expsubap  10503  tgcl  12704
  Copyright terms: Public domain W3C validator