ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blsscls2 GIF version

Theorem blsscls2 13034
Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blsscls2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑇   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blsscls2
StepHypRef Expression
1 blcld.3 . 2 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
2 simplr3 1030 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑅 < 𝑇)
3 xmetcl 12893 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
433expa 1192 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
54adantlr 469 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
6 simplr1 1028 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
7 simplr2 1029 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑇 ∈ ℝ*)
8 xrlelttr 9733 . . . . . . . 8 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*𝑇 ∈ ℝ*) → (((𝑃𝐷𝑧) ≤ 𝑅𝑅 < 𝑇) → (𝑃𝐷𝑧) < 𝑇))
98expcomd 1428 . . . . . . 7 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*𝑇 ∈ ℝ*) → (𝑅 < 𝑇 → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇)))
105, 6, 7, 9syl3anc 1227 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑅 < 𝑇 → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇)))
112, 10mpd 13 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇))
12 simp2 987 . . . . . . 7 ((𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇) → 𝑇 ∈ ℝ*)
13 elbl2 12934 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑇 ∈ ℝ*) ∧ (𝑃𝑋𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1413an4s 578 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑇 ∈ ℝ*𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1512, 14sylanr1 402 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ ((𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇) ∧ 𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1615anassrs 398 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1711, 16sylibrd 168 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
1817ralrimiva 2537 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
19 rabss 3214 . . 3 ({𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝑃(ball‘𝐷)𝑇) ↔ ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
2018, 19sylibr 133 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝑃(ball‘𝐷)𝑇))
211, 20eqsstrid 3183 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135  wral 2442  {crab 2446  wss 3111   class class class wbr 3976  cfv 5182  (class class class)co 5836  *cxr 7923   < clt 7924  cle 7925  ∞Metcxmet 12521  ballcbl 12523  MetOpencmopn 12526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-map 6607  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-psmet 12528  df-xmet 12529  df-bl 12531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator