ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blsscls2 GIF version

Theorem blsscls2 12699
Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blsscls2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑇   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blsscls2
StepHypRef Expression
1 blcld.3 . 2 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
2 simplr3 1026 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑅 < 𝑇)
3 xmetcl 12558 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
433expa 1182 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
54adantlr 469 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
6 simplr1 1024 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
7 simplr2 1025 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑇 ∈ ℝ*)
8 xrlelttr 9618 . . . . . . . 8 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*𝑇 ∈ ℝ*) → (((𝑃𝐷𝑧) ≤ 𝑅𝑅 < 𝑇) → (𝑃𝐷𝑧) < 𝑇))
98expcomd 1418 . . . . . . 7 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*𝑇 ∈ ℝ*) → (𝑅 < 𝑇 → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇)))
105, 6, 7, 9syl3anc 1217 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑅 < 𝑇 → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇)))
112, 10mpd 13 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇))
12 simp2 983 . . . . . . 7 ((𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇) → 𝑇 ∈ ℝ*)
13 elbl2 12599 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑇 ∈ ℝ*) ∧ (𝑃𝑋𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1413an4s 578 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑇 ∈ ℝ*𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1512, 14sylanr1 402 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ ((𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇) ∧ 𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1615anassrs 398 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1711, 16sylibrd 168 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
1817ralrimiva 2508 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
19 rabss 3178 . . 3 ({𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝑃(ball‘𝐷)𝑇) ↔ ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
2018, 19sylibr 133 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝑃(ball‘𝐷)𝑇))
211, 20eqsstrid 3147 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wral 2417  {crab 2421  wss 3075   class class class wbr 3936  cfv 5130  (class class class)co 5781  *cxr 7822   < clt 7823  cle 7824  ∞Metcxmet 12186  ballcbl 12188  MetOpencmopn 12191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-po 4225  df-iso 4226  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-map 6551  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-psmet 12193  df-xmet 12194  df-bl 12196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator