ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blsscls2 GIF version

Theorem blsscls2 13133
Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blsscls2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑇   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blsscls2
StepHypRef Expression
1 blcld.3 . 2 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
2 simplr3 1031 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑅 < 𝑇)
3 xmetcl 12992 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
433expa 1193 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
54adantlr 469 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
6 simplr1 1029 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
7 simplr2 1030 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑇 ∈ ℝ*)
8 xrlelttr 9742 . . . . . . . 8 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*𝑇 ∈ ℝ*) → (((𝑃𝐷𝑧) ≤ 𝑅𝑅 < 𝑇) → (𝑃𝐷𝑧) < 𝑇))
98expcomd 1429 . . . . . . 7 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*𝑇 ∈ ℝ*) → (𝑅 < 𝑇 → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇)))
105, 6, 7, 9syl3anc 1228 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑅 < 𝑇 → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇)))
112, 10mpd 13 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇))
12 simp2 988 . . . . . . 7 ((𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇) → 𝑇 ∈ ℝ*)
13 elbl2 13033 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑇 ∈ ℝ*) ∧ (𝑃𝑋𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1413an4s 578 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑇 ∈ ℝ*𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1512, 14sylanr1 402 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ ((𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇) ∧ 𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1615anassrs 398 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1711, 16sylibrd 168 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
1817ralrimiva 2539 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
19 rabss 3219 . . 3 ({𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝑃(ball‘𝐷)𝑇) ↔ ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
2018, 19sylibr 133 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝑃(ball‘𝐷)𝑇))
211, 20eqsstrid 3188 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wral 2444  {crab 2448  wss 3116   class class class wbr 3982  cfv 5188  (class class class)co 5842  *cxr 7932   < clt 7933  cle 7934  ∞Metcxmet 12620  ballcbl 12622  MetOpencmopn 12625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-psmet 12627  df-xmet 12628  df-bl 12630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator