ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pczpre GIF version

Theorem pczpre 12188
Description: Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
pczpre.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < )
Assertion
Ref Expression
pczpre ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = 𝑆)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem pczpre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zq 9542 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
2 eqid 2157 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
3 eqid 2157 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
42, 3pcval 12187 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
51, 4sylanr1 402 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
6 simprl 521 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ)
76zcnd 9293 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℂ)
87div1d 8658 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / 1) = 𝑁)
98eqcomd 2163 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 = (𝑁 / 1))
10 prmuz2 12024 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
11 eqid 2157 . . . . . . . 8 1 = 1
12 eqid 2157 . . . . . . . . 9 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}
13 eqid 2157 . . . . . . . . 9 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )
1412, 13pcpre1 12183 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 1 = 1) → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ) = 0)
1510, 11, 14sylancl 410 . . . . . . 7 (𝑃 ∈ ℙ → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ) = 0)
1615adantr 274 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ) = 0)
1716oveq2d 5843 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )) = (𝑆 − 0))
18 eqid 2157 . . . . . . . . . 10 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
19 pczpre.1 . . . . . . . . . 10 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < )
2018, 19pcprecl 12180 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
2110, 20sylan 281 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
2221simpld 111 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
2322nn0cnd 9151 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℂ)
2423subid1d 8180 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 − 0) = 𝑆)
2517, 24eqtr2d 2191 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )))
26 1nn 8850 . . . . 5 1 ∈ ℕ
27 oveq1 5834 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 / 𝑦) = (𝑁 / 𝑦))
2827eqeq2d 2169 . . . . . . 7 (𝑥 = 𝑁 → (𝑁 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑁 / 𝑦)))
29 breq2 3971 . . . . . . . . . . . 12 (𝑥 = 𝑁 → ((𝑃𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝑁))
3029rabbidv 2701 . . . . . . . . . . 11 (𝑥 = 𝑁 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁})
3130supeq1d 6934 . . . . . . . . . 10 (𝑥 = 𝑁 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < ))
3231, 19eqtr4di 2208 . . . . . . . . 9 (𝑥 = 𝑁 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = 𝑆)
3332oveq1d 5842 . . . . . . . 8 (𝑥 = 𝑁 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))
3433eqeq2d 2169 . . . . . . 7 (𝑥 = 𝑁 → (𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
3528, 34anbi12d 465 . . . . . 6 (𝑥 = 𝑁 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑁 / 𝑦) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
36 oveq2 5835 . . . . . . . 8 (𝑦 = 1 → (𝑁 / 𝑦) = (𝑁 / 1))
3736eqeq2d 2169 . . . . . . 7 (𝑦 = 1 → (𝑁 = (𝑁 / 𝑦) ↔ 𝑁 = (𝑁 / 1)))
38 breq2 3971 . . . . . . . . . . 11 (𝑦 = 1 → ((𝑃𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 1))
3938rabbidv 2701 . . . . . . . . . 10 (𝑦 = 1 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1})
4039supeq1d 6934 . . . . . . . . 9 (𝑦 = 1 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ))
4140oveq2d 5843 . . . . . . . 8 (𝑦 = 1 → (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )))
4241eqeq2d 2169 . . . . . . 7 (𝑦 = 1 → (𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ))))
4337, 42anbi12d 465 . . . . . 6 (𝑦 = 1 → ((𝑁 = (𝑁 / 𝑦) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑁 / 1) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )))))
4435, 43rspc2ev 2831 . . . . 5 ((𝑁 ∈ ℤ ∧ 1 ∈ ℕ ∧ (𝑁 = (𝑁 / 1) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
4526, 44mp3an2 1307 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑁 = (𝑁 / 1) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
466, 9, 25, 45syl12anc 1218 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
47 reex 7869 . . . . . 6 ℝ ∈ V
48 supex2g 6980 . . . . . 6 (ℝ ∈ V → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < ) ∈ V)
4947, 48ax-mp 5 . . . . 5 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < ) ∈ V
5019, 49eqeltri 2230 . . . 4 𝑆 ∈ V
512, 3pceu 12186 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
521, 51sylanr1 402 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
53 eqeq1 2164 . . . . . . 7 (𝑧 = 𝑆 → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
5453anbi2d 460 . . . . . 6 (𝑧 = 𝑆 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
55542rexbidv 2482 . . . . 5 (𝑧 = 𝑆 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
5655iota2 5164 . . . 4 ((𝑆 ∈ V ∧ ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = 𝑆))
5750, 52, 56sylancr 411 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = 𝑆))
5846, 57mpbid 146 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = 𝑆)
595, 58eqtrd 2190 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  ∃!weu 2006  wcel 2128  wne 2327  wrex 2436  {crab 2439  Vcvv 2712   class class class wbr 3967  cio 5136  cfv 5173  (class class class)co 5827  supcsup 6929  cr 7734  0cc0 7735  1c1 7736   < clt 7915  cmin 8051   / cdiv 8550  cn 8839  2c2 8890  0cn0 9096  cz 9173  cuz 9445  cq 9535  cexp 10428  cdvds 11695  cprime 12000   pCnt cpc 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-gcd 11843  df-prm 12001  df-pc 12176
This theorem is referenced by:  pczcl  12189  pcmul  12192  pcdiv  12193  pc1  12196  pczdvds  12203  pczndvds  12205  pczndvds2  12207  pcneg  12214
  Copyright terms: Public domain W3C validator