Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xorbi1d | GIF version |
Description: Deduction joining an equivalence and a right operand to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.) |
Ref | Expression |
---|---|
xorbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
xorbi1d | ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xorbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | orbi1d 781 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
3 | 1 | anbi1d 461 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜃))) |
4 | 3 | notbid 657 | . . 3 ⊢ (𝜑 → (¬ (𝜓 ∧ 𝜃) ↔ ¬ (𝜒 ∧ 𝜃))) |
5 | 2, 4 | anbi12d 465 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ ¬ (𝜓 ∧ 𝜃)) ↔ ((𝜒 ∨ 𝜃) ∧ ¬ (𝜒 ∧ 𝜃)))) |
6 | df-xor 1366 | . 2 ⊢ ((𝜓 ⊻ 𝜃) ↔ ((𝜓 ∨ 𝜃) ∧ ¬ (𝜓 ∧ 𝜃))) | |
7 | df-xor 1366 | . 2 ⊢ ((𝜒 ⊻ 𝜃) ↔ ((𝜒 ∨ 𝜃) ∧ ¬ (𝜒 ∧ 𝜃))) | |
8 | 5, 6, 7 | 3bitr4g 222 | 1 ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ⊻ wxo 1365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-xor 1366 |
This theorem is referenced by: xorbi12d 1372 |
Copyright terms: Public domain | W3C validator |