| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xorbi1d | GIF version | ||
| Description: Deduction joining an equivalence and a right operand to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| xorbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| xorbi1d | ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xorbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi1d 792 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| 3 | 1 | anbi1d 465 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜃))) |
| 4 | 3 | notbid 668 | . . 3 ⊢ (𝜑 → (¬ (𝜓 ∧ 𝜃) ↔ ¬ (𝜒 ∧ 𝜃))) |
| 5 | 2, 4 | anbi12d 473 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ ¬ (𝜓 ∧ 𝜃)) ↔ ((𝜒 ∨ 𝜃) ∧ ¬ (𝜒 ∧ 𝜃)))) |
| 6 | df-xor 1387 | . 2 ⊢ ((𝜓 ⊻ 𝜃) ↔ ((𝜓 ∨ 𝜃) ∧ ¬ (𝜓 ∧ 𝜃))) | |
| 7 | df-xor 1387 | . 2 ⊢ ((𝜒 ⊻ 𝜃) ↔ ((𝜒 ∨ 𝜃) ∧ ¬ (𝜒 ∧ 𝜃))) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ⊻ wxo 1386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-xor 1387 |
| This theorem is referenced by: xorbi12d 1393 |
| Copyright terms: Public domain | W3C validator |