![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi1d | GIF version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | orbi2d 790 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
3 | orcom 728 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
4 | orcom 728 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1 792 orbi12d 793 xorbi1d 1381 eueq2dc 2911 uneq1 3283 r19.45mv 3517 rexprg 3645 rextpg 3647 swopolem 4306 sowlin 4321 onsucelsucexmidlem1 4528 onsucelsucexmid 4530 ordsoexmid 4562 isosolem 5825 acexmidlema 5866 acexmidlemb 5867 acexmidlem2 5872 acexmidlemv 5873 freceq1 6393 exmidaclem 7207 exmidac 7208 elinp 7473 prloc 7490 suplocexprlemloc 7720 ltsosr 7763 suplocsrlemb 7805 axpre-ltwlin 7882 axpre-suploclemres 7900 axpre-suploc 7901 apreap 8544 apreim 8560 sup3exmid 8914 nn01to3 9617 ltxr 9775 fzpr 10077 elfzp12 10099 lcmval 12063 lcmass 12085 isprm6 12147 lringuplu 13337 dedekindeulemloc 14100 dedekindeulemeu 14103 suplociccreex 14105 dedekindicclemloc 14109 dedekindicclemeu 14112 |
Copyright terms: Public domain | W3C validator |