| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi1d | GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 791 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | orcom 729 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 729 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1 793 orbi12d 794 xorbi1d 1392 eueq2dc 2937 uneq1 3311 r19.45mv 3545 rexprg 3675 rextpg 3677 swopolem 4341 sowlin 4356 onsucelsucexmidlem1 4565 onsucelsucexmid 4567 ordsoexmid 4599 isosolem 5874 acexmidlema 5916 acexmidlemb 5917 acexmidlem2 5922 acexmidlemv 5923 freceq1 6459 exmidaclem 7293 exmidac 7294 elinp 7560 prloc 7577 suplocexprlemloc 7807 ltsosr 7850 suplocsrlemb 7892 axpre-ltwlin 7969 axpre-suploclemres 7987 axpre-suploc 7988 apreap 8633 apreim 8649 sup3exmid 9003 nn01to3 9710 ltxr 9869 fzpr 10171 elfzp12 10193 lcmval 12258 lcmass 12280 isprm6 12342 lringuplu 13830 domneq0 13906 znidom 14291 dedekindeulemloc 14963 dedekindeulemeu 14966 suplociccreex 14968 dedekindicclemloc 14972 dedekindicclemeu 14975 perfectlem2 15344 |
| Copyright terms: Public domain | W3C validator |