| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi1d | GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 791 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | orcom 729 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 729 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1 793 orbi12d 794 xorbi1d 1400 eueq2dc 2945 uneq1 3319 r19.45mv 3553 rexprg 3684 rextpg 3686 swopolem 4350 sowlin 4365 onsucelsucexmidlem1 4574 onsucelsucexmid 4576 ordsoexmid 4608 isosolem 5883 acexmidlema 5925 acexmidlemb 5926 acexmidlem2 5931 acexmidlemv 5932 freceq1 6468 exmidaclem 7302 exmidac 7303 elinp 7569 prloc 7586 suplocexprlemloc 7816 ltsosr 7859 suplocsrlemb 7901 axpre-ltwlin 7978 axpre-suploclemres 7996 axpre-suploc 7997 apreap 8642 apreim 8658 sup3exmid 9012 nn01to3 9720 ltxr 9879 fzpr 10181 elfzp12 10203 lcmval 12304 lcmass 12326 isprm6 12388 lringuplu 13876 domneq0 13952 znidom 14337 dedekindeulemloc 15009 dedekindeulemeu 15012 suplociccreex 15014 dedekindicclemloc 15018 dedekindicclemeu 15021 perfectlem2 15390 |
| Copyright terms: Public domain | W3C validator |