| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > orbi1d | GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 791 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) | 
| 3 | orcom 729 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 729 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: orbi1 793 orbi12d 794 xorbi1d 1392 eueq2dc 2937 uneq1 3310 r19.45mv 3544 rexprg 3674 rextpg 3676 swopolem 4340 sowlin 4355 onsucelsucexmidlem1 4564 onsucelsucexmid 4566 ordsoexmid 4598 isosolem 5871 acexmidlema 5913 acexmidlemb 5914 acexmidlem2 5919 acexmidlemv 5920 freceq1 6450 exmidaclem 7275 exmidac 7276 elinp 7541 prloc 7558 suplocexprlemloc 7788 ltsosr 7831 suplocsrlemb 7873 axpre-ltwlin 7950 axpre-suploclemres 7968 axpre-suploc 7969 apreap 8614 apreim 8630 sup3exmid 8984 nn01to3 9691 ltxr 9850 fzpr 10152 elfzp12 10174 lcmval 12231 lcmass 12253 isprm6 12315 lringuplu 13752 domneq0 13828 znidom 14213 dedekindeulemloc 14855 dedekindeulemeu 14858 suplociccreex 14860 dedekindicclemloc 14864 dedekindicclemeu 14867 perfectlem2 15236 | 
| Copyright terms: Public domain | W3C validator |