| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi1d | GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 792 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | orcom 730 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 730 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1 794 orbi12d 795 xorbi1d 1401 eueq2dc 2950 uneq1 3324 r19.45mv 3558 rexprg 3690 rextpg 3692 swopolem 4360 sowlin 4375 onsucelsucexmidlem1 4584 onsucelsucexmid 4586 ordsoexmid 4618 isosolem 5906 acexmidlema 5948 acexmidlemb 5949 acexmidlem2 5954 acexmidlemv 5955 freceq1 6491 exmidaclem 7336 exmidac 7337 elinp 7607 prloc 7624 suplocexprlemloc 7854 ltsosr 7897 suplocsrlemb 7939 axpre-ltwlin 8016 axpre-suploclemres 8034 axpre-suploc 8035 apreap 8680 apreim 8696 sup3exmid 9050 nn01to3 9758 ltxr 9917 fzpr 10219 elfzp12 10241 lcmval 12460 lcmass 12482 isprm6 12544 lringuplu 14033 domneq0 14109 znidom 14494 dedekindeulemloc 15166 dedekindeulemeu 15169 suplociccreex 15171 dedekindicclemloc 15175 dedekindicclemeu 15178 perfectlem2 15547 |
| Copyright terms: Public domain | W3C validator |