| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi1d | GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 791 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | orcom 729 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 729 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1 793 orbi12d 794 xorbi1d 1400 eueq2dc 2945 uneq1 3319 r19.45mv 3553 rexprg 3684 rextpg 3686 swopolem 4351 sowlin 4366 onsucelsucexmidlem1 4575 onsucelsucexmid 4577 ordsoexmid 4609 isosolem 5892 acexmidlema 5934 acexmidlemb 5935 acexmidlem2 5940 acexmidlemv 5941 freceq1 6477 exmidaclem 7319 exmidac 7320 elinp 7586 prloc 7603 suplocexprlemloc 7833 ltsosr 7876 suplocsrlemb 7918 axpre-ltwlin 7995 axpre-suploclemres 8013 axpre-suploc 8014 apreap 8659 apreim 8675 sup3exmid 9029 nn01to3 9737 ltxr 9896 fzpr 10198 elfzp12 10220 lcmval 12327 lcmass 12349 isprm6 12411 lringuplu 13900 domneq0 13976 znidom 14361 dedekindeulemloc 15033 dedekindeulemeu 15036 suplociccreex 15038 dedekindicclemloc 15042 dedekindicclemeu 15045 perfectlem2 15414 |
| Copyright terms: Public domain | W3C validator |