Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi1d | GIF version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | orbi2d 780 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
3 | orcom 718 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
4 | orcom 718 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orbi1 782 orbi12d 783 xorbi1d 1371 eueq2dc 2899 uneq1 3269 r19.45mv 3502 rexprg 3628 rextpg 3630 swopolem 4283 sowlin 4298 onsucelsucexmidlem1 4505 onsucelsucexmid 4507 ordsoexmid 4539 isosolem 5792 acexmidlema 5833 acexmidlemb 5834 acexmidlem2 5839 acexmidlemv 5840 freceq1 6360 exmidaclem 7164 exmidac 7165 elinp 7415 prloc 7432 suplocexprlemloc 7662 ltsosr 7705 suplocsrlemb 7747 axpre-ltwlin 7824 axpre-suploclemres 7842 axpre-suploc 7843 apreap 8485 apreim 8501 sup3exmid 8852 nn01to3 9555 ltxr 9711 fzpr 10012 elfzp12 10034 lcmval 11995 lcmass 12017 isprm6 12079 dedekindeulemloc 13237 dedekindeulemeu 13240 suplociccreex 13242 dedekindicclemloc 13246 dedekindicclemeu 13249 |
Copyright terms: Public domain | W3C validator |