![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi1d | GIF version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | orbi2d 791 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
3 | orcom 729 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
4 | orcom 729 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1 793 orbi12d 794 xorbi1d 1392 eueq2dc 2934 uneq1 3307 r19.45mv 3541 rexprg 3671 rextpg 3673 swopolem 4337 sowlin 4352 onsucelsucexmidlem1 4561 onsucelsucexmid 4563 ordsoexmid 4595 isosolem 5868 acexmidlema 5910 acexmidlemb 5911 acexmidlem2 5916 acexmidlemv 5917 freceq1 6447 exmidaclem 7270 exmidac 7271 elinp 7536 prloc 7553 suplocexprlemloc 7783 ltsosr 7826 suplocsrlemb 7868 axpre-ltwlin 7945 axpre-suploclemres 7963 axpre-suploc 7964 apreap 8608 apreim 8624 sup3exmid 8978 nn01to3 9685 ltxr 9844 fzpr 10146 elfzp12 10168 lcmval 12204 lcmass 12226 isprm6 12288 lringuplu 13695 domneq0 13771 znidom 14156 dedekindeulemloc 14798 dedekindeulemeu 14801 suplociccreex 14803 dedekindicclemloc 14807 dedekindicclemeu 14810 |
Copyright terms: Public domain | W3C validator |