![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi1d | GIF version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | orbi2d 791 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
3 | orcom 729 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
4 | orcom 729 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1 793 orbi12d 794 xorbi1d 1392 eueq2dc 2933 uneq1 3306 r19.45mv 3540 rexprg 3670 rextpg 3672 swopolem 4336 sowlin 4351 onsucelsucexmidlem1 4560 onsucelsucexmid 4562 ordsoexmid 4594 isosolem 5867 acexmidlema 5909 acexmidlemb 5910 acexmidlem2 5915 acexmidlemv 5916 freceq1 6445 exmidaclem 7268 exmidac 7269 elinp 7534 prloc 7551 suplocexprlemloc 7781 ltsosr 7824 suplocsrlemb 7866 axpre-ltwlin 7943 axpre-suploclemres 7961 axpre-suploc 7962 apreap 8606 apreim 8622 sup3exmid 8976 nn01to3 9682 ltxr 9841 fzpr 10143 elfzp12 10165 lcmval 12201 lcmass 12223 isprm6 12285 lringuplu 13692 domneq0 13768 znidom 14145 dedekindeulemloc 14773 dedekindeulemeu 14776 suplociccreex 14778 dedekindicclemloc 14782 dedekindicclemeu 14785 |
Copyright terms: Public domain | W3C validator |