| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi1d | GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 795 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | orcom 733 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 733 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1 797 orbi12d 798 xorbi1d 1423 eueq2dc 2976 uneq1 3351 r19.45mv 3585 rexprg 3718 rextpg 3720 swopolem 4395 sowlin 4410 onsucelsucexmidlem1 4619 onsucelsucexmid 4621 ordsoexmid 4653 isosolem 5947 acexmidlema 5991 acexmidlemb 5992 acexmidlem2 5997 acexmidlemv 5998 freceq1 6536 exmidaclem 7386 exmidac 7387 elinp 7657 prloc 7674 suplocexprlemloc 7904 ltsosr 7947 suplocsrlemb 7989 axpre-ltwlin 8066 axpre-suploclemres 8084 axpre-suploc 8085 apreap 8730 apreim 8746 sup3exmid 9100 nn01to3 9808 ltxr 9967 fzpr 10269 elfzp12 10291 lcmval 12580 lcmass 12602 isprm6 12664 lringuplu 14154 domneq0 14230 znidom 14615 dedekindeulemloc 15287 dedekindeulemeu 15290 suplociccreex 15292 dedekindicclemloc 15296 dedekindicclemeu 15299 perfectlem2 15668 |
| Copyright terms: Public domain | W3C validator |