| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.28vv | Structured version Visualization version GIF version | ||
| Description: Theorem *11.47 in [WhiteheadRussell] p. 164. Theorem 19.28 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| 19.28vv | ⊢ (∀𝑥∀𝑦(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∀𝑥∀𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.28v 1996 | . . 3 ⊢ (∀𝑦(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∀𝑦𝜑)) | |
| 2 | 1 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦(𝜓 ∧ 𝜑) ↔ ∀𝑥(𝜓 ∧ ∀𝑦𝜑)) |
| 3 | 19.28v 1996 | . 2 ⊢ (∀𝑥(𝜓 ∧ ∀𝑦𝜑) ↔ (𝜓 ∧ ∀𝑥∀𝑦𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥∀𝑦(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∀𝑥∀𝑦𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |