|   | Mathbox for Andrew Salmon | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.28vv | Structured version Visualization version GIF version | ||
| Description: Theorem *11.47 in [WhiteheadRussell] p. 164. Theorem 19.28 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) | 
| Ref | Expression | 
|---|---|
| 19.28vv | ⊢ (∀𝑥∀𝑦(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∀𝑥∀𝑦𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.28v 1989 | . . 3 ⊢ (∀𝑦(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∀𝑦𝜑)) | |
| 2 | 1 | albii 1818 | . 2 ⊢ (∀𝑥∀𝑦(𝜓 ∧ 𝜑) ↔ ∀𝑥(𝜓 ∧ ∀𝑦𝜑)) | 
| 3 | 19.28v 1989 | . 2 ⊢ (∀𝑥(𝜓 ∧ ∀𝑦𝜑) ↔ (𝜓 ∧ ∀𝑥∀𝑦𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥∀𝑦(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∀𝑥∀𝑦𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |