| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.28v | Structured version Visualization version GIF version | ||
| Description: Version of 19.28 2229 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| 19.28v | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1870 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
| 2 | 19.3v 1982 | . 2 ⊢ (∀𝑥𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bianbi 627 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: reu6 3714 dfer2 8725 kmlem14 10183 kmlem15 10184 bnj1176 35041 bnj1186 35043 ismnuprim 44285 19.28vv 44377 |
| Copyright terms: Public domain | W3C validator |