MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.28v Structured version   Visualization version   GIF version

Theorem 19.28v 1997
Description: Version of 19.28 2231 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
19.28v (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.28v
StepHypRef Expression
1 19.26 1871 . 2 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
2 19.3v 1983 . 2 (∀𝑥𝜑𝜑)
31, 2bianbi 627 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  reu6  3680  dfer2  8623  kmlem14  10055  kmlem15  10056  bnj1176  35017  bnj1186  35019  ismnuprim  44386  19.28vv  44478
  Copyright terms: Public domain W3C validator