Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.28v Structured version   Visualization version   GIF version

Theorem 19.28v 1997
 Description: Version of 19.28 2231 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
19.28v (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.28v
StepHypRef Expression
1 19.26 1871 . 2 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
2 19.3v 1986 . . 3 (∀𝑥𝜑𝜑)
32anbi1i 626 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
41, 3bitri 278 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399  ∀wal 1536 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782 This theorem is referenced by:  reu6  3692  dfer2  8277  kmlem14  9578  kmlem15  9579  bnj1176  32351  bnj1186  32353  ismnuprim  40937  19.28vv  41025
 Copyright terms: Public domain W3C validator