Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2exbi Structured version   Visualization version   GIF version

Theorem 2exbi 41998
Description: Theorem *11.341 in [WhiteheadRussell] p. 162. Theorem 19.18 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
2exbi (∀𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓))

Proof of Theorem 2exbi
StepHypRef Expression
1 exbi 1849 . . 3 (∀𝑦(𝜑𝜓) → (∃𝑦𝜑 ↔ ∃𝑦𝜓))
21alimi 1814 . 2 (∀𝑥𝑦(𝜑𝜓) → ∀𝑥(∃𝑦𝜑 ↔ ∃𝑦𝜓))
3 exbi 1849 . 2 (∀𝑥(∃𝑦𝜑 ↔ ∃𝑦𝜓) → (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓))
42, 3syl 17 1 (∀𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator