Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > spsbce-2 | Structured version Visualization version GIF version |
Description: Theorem *11.36 in [WhiteheadRussell] p. 162. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
spsbce-2 | ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbe 2086 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥[𝑤 / 𝑦]𝜑) | |
2 | spsbe 2086 | . . 3 ⊢ ([𝑤 / 𝑦]𝜑 → ∃𝑦𝜑) | |
3 | 2 | eximi 1838 | . 2 ⊢ (∃𝑥[𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) |
4 | 1, 3 | syl 17 | 1 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-sb 2069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |