| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > spsbce-2 | Structured version Visualization version GIF version | ||
| Description: Theorem *11.36 in [WhiteheadRussell] p. 162. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| spsbce-2 | ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbe 2083 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥[𝑤 / 𝑦]𝜑) | |
| 2 | spsbe 2083 | . . 3 ⊢ ([𝑤 / 𝑦]𝜑 → ∃𝑦𝜑) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥[𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) |
| 4 | 1, 3 | syl 17 | 1 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |