|   | Mathbox for Andrew Salmon | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > spsbce-2 | Structured version Visualization version GIF version | ||
| Description: Theorem *11.36 in [WhiteheadRussell] p. 162. (Contributed by Andrew Salmon, 24-May-2011.) | 
| Ref | Expression | 
|---|---|
| spsbce-2 | ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spsbe 2081 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥[𝑤 / 𝑦]𝜑) | |
| 2 | spsbe 2081 | . . 3 ⊢ ([𝑤 / 𝑦]𝜑 → ∃𝑦𝜑) | |
| 3 | 2 | eximi 1834 | . 2 ⊢ (∃𝑥[𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) | 
| 4 | 1, 3 | syl 17 | 1 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∃wex 1778 [wsb 2063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-sb 2064 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |