Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exbi Structured version   Visualization version   GIF version

Theorem exbi 1948
 Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
exbi (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))

Proof of Theorem exbi
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21alexbii 1933 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198  ∀wal 1656  ∃wex 1880 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910 This theorem depends on definitions:  df-bi 199  df-ex 1881 This theorem is referenced by:  exbii  1949  nfbiit  1952  19.19  2274  mobiOLDOLD  2615  eubi  2657  bj-2exbi  33128  bj-3exbi  33129  2exbi  39419  rexbidar  39488  onfrALTlem1VD  39944  csbxpgVD  39948  csbrngVD  39950  csbunigVD  39952  e2ebindVD  39966  e2ebindALT  39983
 Copyright terms: Public domain W3C validator