MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exbi Structured version   Visualization version   GIF version

Theorem exbi 1850
Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
exbi (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))

Proof of Theorem exbi
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21alexbii 1836 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  exbii  1851  nfbiit  1854  19.19  2225  eubi  2584  bj-2exbi  34724  bj-3exbi  34725  bj-hbyfrbi  34739  2exbi  41887  rexbidar  41953  onfrALTlem1VD  42399  csbxpgVD  42403  csbrngVD  42405  csbunigVD  42407  e2ebindVD  42421  e2ebindALT  42438
  Copyright terms: Public domain W3C validator