|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > exbi | Structured version Visualization version GIF version | ||
| Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) | 
| Ref | Expression | 
|---|---|
| exbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | alexbii 1833 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 | 
| This theorem is referenced by: exbii 1848 nfbiit 1851 19.19 2229 eubi 2584 axpr 5427 bj-2exbi 36616 bj-3exbi 36617 bj-hbyfrbi 36632 2exbi 44399 rexbidar 44465 onfrALTlem1VD 44910 csbxpgVD 44914 csbrngVD 44916 csbunigVD 44918 e2ebindVD 44932 e2ebindALT 44949 | 
| Copyright terms: Public domain | W3C validator |