![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exbi | Structured version Visualization version GIF version |
Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
exbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | alexbii 1933 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1656 ∃wex 1880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 |
This theorem depends on definitions: df-bi 199 df-ex 1881 |
This theorem is referenced by: exbii 1949 nfbiit 1952 19.19 2274 mobiOLDOLD 2615 eubi 2657 bj-2exbi 33128 bj-3exbi 33129 2exbi 39419 rexbidar 39488 onfrALTlem1VD 39944 csbxpgVD 39948 csbrngVD 39950 csbunigVD 39952 e2ebindVD 39966 e2ebindALT 39983 |
Copyright terms: Public domain | W3C validator |