Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exbi | Structured version Visualization version GIF version |
Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
exbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | alexbii 1835 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: exbii 1850 nfbiit 1853 19.19 2222 eubi 2584 bj-2exbi 34797 bj-3exbi 34798 bj-hbyfrbi 34812 2exbi 41998 rexbidar 42064 onfrALTlem1VD 42510 csbxpgVD 42514 csbrngVD 42516 csbunigVD 42518 e2ebindVD 42532 e2ebindALT 42549 |
Copyright terms: Public domain | W3C validator |