MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exbi Structured version   Visualization version   GIF version

Theorem exbi 1847
Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
exbi (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))

Proof of Theorem exbi
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21alexbii 1833 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  exbii  1848  nfbiit  1851  19.19  2229  eubi  2584  axpr  5427  bj-2exbi  36616  bj-3exbi  36617  bj-hbyfrbi  36632  2exbi  44399  rexbidar  44465  onfrALTlem1VD  44910  csbxpgVD  44914  csbrngVD  44916  csbunigVD  44918  e2ebindVD  44932  e2ebindALT  44949
  Copyright terms: Public domain W3C validator