Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exbi | Structured version Visualization version GIF version |
Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
exbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | alexbii 1836 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: exbii 1851 nfbiit 1854 19.19 2225 eubi 2584 bj-2exbi 34724 bj-3exbi 34725 bj-hbyfrbi 34739 2exbi 41887 rexbidar 41953 onfrALTlem1VD 42399 csbxpgVD 42403 csbrngVD 42405 csbunigVD 42407 e2ebindVD 42421 e2ebindALT 42438 |
Copyright terms: Public domain | W3C validator |