![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exbi | Structured version Visualization version GIF version |
Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
exbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | alexbii 1831 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: exbii 1846 nfbiit 1849 19.19 2230 eubi 2587 bj-2exbi 36581 bj-3exbi 36582 bj-hbyfrbi 36597 2exbi 44349 rexbidar 44415 onfrALTlem1VD 44861 csbxpgVD 44865 csbrngVD 44867 csbunigVD 44869 e2ebindVD 44883 e2ebindALT 44900 |
Copyright terms: Public domain | W3C validator |