Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reureurex Structured version   Visualization version   GIF version

Theorem 2reureurex 30830
Description: Double restricted existential uniqueness implies restricted existential uniqueness with restricted existence. (Contributed by AV, 5-Jul-2023.)
Assertion
Ref Expression
2reureurex (∃!𝑥𝐴 , 𝑦𝐵𝜑 → ∃!𝑥𝐴𝑦𝐵 𝜑)

Proof of Theorem 2reureurex
StepHypRef Expression
1 df-2reu 30827 . 2 (∃!𝑥𝐴 , 𝑦𝐵𝜑 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑))
21simplbi 498 1 (∃!𝑥𝐴 , 𝑦𝐵𝜑 → ∃!𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3065  ∃!wreu 3066  ∃!w2reu 30826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-2reu 30827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator