|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2reureurex | Structured version Visualization version GIF version | ||
| Description: Double restricted existential uniqueness implies restricted existential uniqueness with restricted existence. (Contributed by AV, 5-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| 2reureurex | ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-2reu 32499 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∃wrex 3069 ∃!wreu 3377 ∃!w2reu 32498 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-2reu 32499 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |