| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2reu2reu2 | Structured version Visualization version GIF version | ||
| Description: Double restricted existential uniqueness implies two nested restricted existential uniqueness. (Contributed by AV, 5-Jul-2023.) |
| Ref | Expression |
|---|---|
| 2reu2reu2 | ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2reu 32458 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 2rexreu 3716 | . 2 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wrex 3056 ∃!wreu 3344 ∃!w2reu 32457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 df-eu 2564 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-2reu 32458 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |