Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-2reu Structured version   Visualization version   GIF version

Definition df-2reu 30728
Description: Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023.)
Assertion
Ref Expression
df-2reu (∃!𝑥𝐴 , 𝑦𝐵𝜑 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑))

Detailed syntax breakdown of Definition df-2reu
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cA . . 3 class 𝐴
5 cB . . 3 class 𝐵
61, 2, 3, 4, 5w2reu 30727 . 2 wff ∃!𝑥𝐴 , 𝑦𝐵𝜑
71, 3, 5wrex 3064 . . . 4 wff 𝑦𝐵 𝜑
87, 2, 4wreu 3065 . . 3 wff ∃!𝑥𝐴𝑦𝐵 𝜑
91, 2, 4wrex 3064 . . . 4 wff 𝑥𝐴 𝜑
109, 3, 5wreu 3065 . . 3 wff ∃!𝑦𝐵𝑥𝐴 𝜑
118, 10wa 395 . 2 wff (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)
126, 11wb 205 1 wff (∃!𝑥𝐴 , 𝑦𝐵𝜑 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑))
Colors of variables: wff setvar class
This definition is referenced by:  2reucom  30729  2reu2rex1  30730  2reureurex  30731  2reu2reu2  30732  opreu2reu1  30733  sq2reunnltb  30734  addsqnot2reu  30735
  Copyright terms: Public domain W3C validator