|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-2reu | Structured version Visualization version GIF version | ||
| Description: Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| df-2reu | ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cA | . . 3 class 𝐴 | |
| 5 | cB | . . 3 class 𝐵 | |
| 6 | 1, 2, 3, 4, 5 | w2reu 32497 | . 2 wff ∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 | 
| 7 | 1, 3, 5 | wrex 3070 | . . . 4 wff ∃𝑦 ∈ 𝐵 𝜑 | 
| 8 | 7, 2, 4 | wreu 3378 | . . 3 wff ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 | 
| 9 | 1, 2, 4 | wrex 3070 | . . . 4 wff ∃𝑥 ∈ 𝐴 𝜑 | 
| 10 | 9, 3, 5 | wreu 3378 | . . 3 wff ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 | 
| 11 | 8, 10 | wa 395 | . 2 wff (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | 
| 12 | 6, 11 | wb 206 | 1 wff (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: 2reucom 32499 2reu2rex1 32500 2reureurex 32501 2reu2reu2 32502 opreu2reu1 32503 sq2reunnltb 32504 addsqnot2reu 32505 | 
| Copyright terms: Public domain | W3C validator |