Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-2reu | Structured version Visualization version GIF version |
Description: Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
Ref | Expression |
---|---|
df-2reu | ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cA | . . 3 class 𝐴 | |
5 | cB | . . 3 class 𝐵 | |
6 | 1, 2, 3, 4, 5 | w2reu 30826 | . 2 wff ∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 |
7 | 1, 3, 5 | wrex 3065 | . . . 4 wff ∃𝑦 ∈ 𝐵 𝜑 |
8 | 7, 2, 4 | wreu 3066 | . . 3 wff ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 |
9 | 1, 2, 4 | wrex 3065 | . . . 4 wff ∃𝑥 ∈ 𝐴 𝜑 |
10 | 9, 3, 5 | wreu 3066 | . . 3 wff ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 |
11 | 8, 10 | wa 396 | . 2 wff (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
12 | 6, 11 | wb 205 | 1 wff (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: 2reucom 30828 2reu2rex1 30829 2reureurex 30830 2reu2reu2 30831 opreu2reu1 30832 sq2reunnltb 30833 addsqnot2reu 30834 |
Copyright terms: Public domain | W3C validator |