| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-2reu | Structured version Visualization version GIF version | ||
| Description: Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| Ref | Expression |
|---|---|
| df-2reu | ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cA | . . 3 class 𝐴 | |
| 5 | cB | . . 3 class 𝐵 | |
| 6 | 1, 2, 3, 4, 5 | w2reu 32464 | . 2 wff ∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 |
| 7 | 1, 3, 5 | wrex 3061 | . . . 4 wff ∃𝑦 ∈ 𝐵 𝜑 |
| 8 | 7, 2, 4 | wreu 3362 | . . 3 wff ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 |
| 9 | 1, 2, 4 | wrex 3061 | . . . 4 wff ∃𝑥 ∈ 𝐴 𝜑 |
| 10 | 9, 3, 5 | wreu 3362 | . . 3 wff ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 |
| 11 | 8, 10 | wa 395 | . 2 wff (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| 12 | 6, 11 | wb 206 | 1 wff (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 2reucom 32466 2reu2rex1 32467 2reureurex 32468 2reu2reu2 32469 opreu2reu1 32470 sq2reunnltb 32471 addsqnot2reu 32472 |
| Copyright terms: Public domain | W3C validator |