Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu2rex1 Structured version   Visualization version   GIF version

Theorem 2reu2rex1 30730
Description: Double restricted existential uniqueness implies double restricted existence. (Contributed by Thierry Arnoux, 4-Jul-2023.)
Assertion
Ref Expression
2reu2rex1 (∃!𝑥𝐴 , 𝑦𝐵𝜑 → ∃𝑥𝐴𝑦𝐵 𝜑)

Proof of Theorem 2reu2rex1
StepHypRef Expression
1 df-2reu 30728 . . 3 (∃!𝑥𝐴 , 𝑦𝐵𝜑 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑))
21simplbi 497 . 2 (∃!𝑥𝐴 , 𝑦𝐵𝜑 → ∃!𝑥𝐴𝑦𝐵 𝜑)
3 reurex 3352 . 2 (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃𝑥𝐴𝑦𝐵 𝜑)
42, 3syl 17 1 (∃!𝑥𝐴 , 𝑦𝐵𝜑 → ∃𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3064  ∃!wreu 3065  ∃!w2reu 30727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-eu 2569  df-rex 3069  df-reu 3070  df-rmo 3071  df-2reu 30728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator