| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anandis | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.) |
| Ref | Expression |
|---|---|
| 3anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜑) | |
| 2 | simpr1 1194 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) | |
| 3 | simpr2 1195 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) | |
| 4 | simpr3 1196 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) | |
| 5 | 3anandis.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃)) → 𝜏) | |
| 6 | 1, 2, 1, 3, 1, 4, 5 | syl222anc 1387 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |