| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | exbiri 810 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rmoi 3871 brelrng 5926 fpr3g 8289 frrlem4 8293 dif1enlem 9175 dif1enlemOLD 9176 php3 9228 div2sub 12071 nn0p1elfzo 13724 ssfzo12 13780 modltm1p1mod 13946 hashgt23el 14447 repswpfx 14808 abssubge0 15351 qredeu 16682 abvne0 20784 slesolinvbi 22624 basgen2 22932 fcfval 23976 nmne0 24563 ovolfsf 25429 logbprmirr 26763 lgssq 27305 lgssq2 27306 colinearalg 28894 usgr0v 29225 frgr0vb 30249 nv1 30661 adjeq 31921 pridln1 33463 revpfxsfxrev 35143 areacirc 37742 fvopabf4g 37751 exidreslem 37906 hgmapvvlem3 41949 iocmbl 43204 iunconnlem2 44926 ssfz12 47310 m1modmmod 48468 |
| Copyright terms: Public domain | W3C validator |