| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | exbiri 810 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rmoi 3851 brelrng 5894 fpr3g 8241 frrlem4 8245 dif1enlem 9097 dif1enlemOLD 9098 php3 9150 div2sub 11983 nn0p1elfzo 13639 ssfzo12 13696 modltm1p1mod 13864 hashgt23el 14365 repswpfx 14726 abssubge0 15270 qredeu 16604 abvne0 20704 slesolinvbi 22544 basgen2 22852 fcfval 23896 nmne0 24483 ovolfsf 25348 logbprmirr 26682 lgssq 27224 lgssq2 27225 colinearalg 28813 usgr0v 29144 frgr0vb 30165 nv1 30577 adjeq 31837 pridln1 33387 revpfxsfxrev 35076 areacirc 37680 fvopabf4g 37689 exidreslem 37844 hgmapvvlem3 41892 iocmbl 43175 iunconnlem2 44897 ssfz12 47288 m1modmmod 47332 |
| Copyright terms: Public domain | W3C validator |