MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimp3ar Structured version   Visualization version   GIF version

Theorem biimp3ar 1472
Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3ar ((𝜑𝜓𝜃) → 𝜒)

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21exbiri 810 . 2 (𝜑 → (𝜓 → (𝜃𝜒)))
323imp 1110 1 ((𝜑𝜓𝜃) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  rmoi  3857  brelrng  5908  fpr3g  8267  frrlem4  8271  dif1enlem  9126  dif1enlemOLD  9127  php3  9179  div2sub  12014  nn0p1elfzo  13670  ssfzo12  13727  modltm1p1mod  13895  hashgt23el  14396  repswpfx  14757  abssubge0  15301  qredeu  16635  abvne0  20735  slesolinvbi  22575  basgen2  22883  fcfval  23927  nmne0  24514  ovolfsf  25379  logbprmirr  26713  lgssq  27255  lgssq2  27256  colinearalg  28844  usgr0v  29175  frgr0vb  30199  nv1  30611  adjeq  31871  pridln1  33421  revpfxsfxrev  35110  areacirc  37714  fvopabf4g  37723  exidreslem  37878  hgmapvvlem3  41926  iocmbl  43209  iunconnlem2  44931  ssfz12  47319  m1modmmod  47363
  Copyright terms: Public domain W3C validator