![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | exbiri 810 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
3 | 2 | 3imp 1111 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: rmoi 3913 brelrng 5966 fpr3g 8326 frrlem4 8330 dif1enlem 9222 dif1enlemOLD 9223 php3 9275 div2sub 12119 nn0p1elfzo 13759 ssfzo12 13809 modltm1p1mod 13974 hashgt23el 14473 repswpfx 14833 abssubge0 15376 qredeu 16705 abvne0 20842 slesolinvbi 22708 basgen2 23017 fcfval 24062 nmne0 24653 ovolfsf 25525 logbprmirr 26857 lgssq 27399 lgssq2 27400 colinearalg 28943 usgr0v 29276 frgr0vb 30295 nv1 30707 adjeq 31967 pridln1 33436 revpfxsfxrev 35083 areacirc 37673 fvopabf4g 37682 exidreslem 37837 hgmapvvlem3 41882 iocmbl 43174 iunconnlem2 44906 ssfz12 47229 m1modmmod 48255 |
Copyright terms: Public domain | W3C validator |