![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpar 470. (Contributed by NM, 2-Jan-2009.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | exbiri 799 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
3 | 2 | 3imp 1092 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-3an 1071 |
This theorem is referenced by: rmoi 3780 brelrng 5659 div2sub 11272 nn0p1elfzo 12901 ssfzo12 12951 modltm1p1mod 13112 hashgt23el 13604 abssubge0 14554 qredeu 15864 abvne0 19332 slesolinvbi 21009 basgen2 21316 fcfval 22360 nmne0 22946 ovolfsf 23790 logbprmirr 25090 lgssq 25630 lgssq2 25631 colinearalg 26414 usgr0v 26741 frgr0vb 27811 nv1 28244 adjeq 29508 fpr3g 32683 frrlem4 32687 areacirc 34468 fvopabf4g 34478 exidreslem 34637 hgmapvvlem3 38546 iocmbl 39256 iunconnlem2 40728 ssfz12 42955 m1modmmod 43984 |
Copyright terms: Public domain | W3C validator |