![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | exbiri 811 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: rmoi 3900 brelrng 5955 fpr3g 8309 frrlem4 8313 dif1enlem 9195 dif1enlemOLD 9196 php3 9247 div2sub 12090 nn0p1elfzo 13739 ssfzo12 13795 modltm1p1mod 13961 hashgt23el 14460 repswpfx 14820 abssubge0 15363 qredeu 16692 abvne0 20837 slesolinvbi 22703 basgen2 23012 fcfval 24057 nmne0 24648 ovolfsf 25520 logbprmirr 26854 lgssq 27396 lgssq2 27397 colinearalg 28940 usgr0v 29273 frgr0vb 30292 nv1 30704 adjeq 31964 pridln1 33451 revpfxsfxrev 35100 areacirc 37700 fvopabf4g 37709 exidreslem 37864 hgmapvvlem3 41908 iocmbl 43202 iunconnlem2 44933 ssfz12 47264 m1modmmod 48371 |
Copyright terms: Public domain | W3C validator |