| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | exbiri 810 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rmoi 3854 brelrng 5905 fpr3g 8264 frrlem4 8268 dif1enlem 9120 dif1enlemOLD 9121 php3 9173 div2sub 12007 nn0p1elfzo 13663 ssfzo12 13720 modltm1p1mod 13888 hashgt23el 14389 repswpfx 14750 abssubge0 15294 qredeu 16628 abvne0 20728 slesolinvbi 22568 basgen2 22876 fcfval 23920 nmne0 24507 ovolfsf 25372 logbprmirr 26706 lgssq 27248 lgssq2 27249 colinearalg 28837 usgr0v 29168 frgr0vb 30192 nv1 30604 adjeq 31864 pridln1 33414 revpfxsfxrev 35103 areacirc 37707 fvopabf4g 37716 exidreslem 37871 hgmapvvlem3 41919 iocmbl 43202 iunconnlem2 44924 ssfz12 47315 m1modmmod 47359 |
| Copyright terms: Public domain | W3C validator |