Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpar 481. (Contributed by NM, 2-Jan-2009.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | exbiri 811 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
3 | 2 | 3imp 1113 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: rmoi 3803 brelrng 5810 fpr3g 8026 frrlem4 8030 dif1enlem 8838 div2sub 11657 nn0p1elfzo 13285 ssfzo12 13335 modltm1p1mod 13496 hashgt23el 13991 repswpfx 14350 abssubge0 14891 qredeu 16215 abvne0 19863 slesolinvbi 21578 basgen2 21886 fcfval 22930 nmne0 23517 ovolfsf 24368 logbprmirr 25679 lgssq 26218 lgssq2 26219 colinearalg 27001 usgr0v 27329 frgr0vb 28346 nv1 28756 adjeq 30016 pridln1 31332 revpfxsfxrev 32790 areacirc 35607 fvopabf4g 35616 exidreslem 35772 hgmapvvlem3 39676 iocmbl 40747 iunconnlem2 42228 ssfz12 44479 m1modmmod 45540 |
Copyright terms: Public domain | W3C validator |