MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimp3ar Structured version   Visualization version   GIF version

Theorem biimp3ar 1450
Description: Infer implication from a logical equivalence. Similar to biimpar 470. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3ar ((𝜑𝜓𝜃) → 𝜒)

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21exbiri 799 . 2 (𝜑 → (𝜓 → (𝜃𝜒)))
323imp 1092 1 ((𝜑𝜓𝜃) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 388  df-3an 1071
This theorem is referenced by:  rmoi  3780  brelrng  5659  div2sub  11272  nn0p1elfzo  12901  ssfzo12  12951  modltm1p1mod  13112  hashgt23el  13604  abssubge0  14554  qredeu  15864  abvne0  19332  slesolinvbi  21009  basgen2  21316  fcfval  22360  nmne0  22946  ovolfsf  23790  logbprmirr  25090  lgssq  25630  lgssq2  25631  colinearalg  26414  usgr0v  26741  frgr0vb  27811  nv1  28244  adjeq  29508  fpr3g  32683  frrlem4  32687  areacirc  34468  fvopabf4g  34478  exidreslem  34637  hgmapvvlem3  38546  iocmbl  39256  iunconnlem2  40728  ssfz12  42955  m1modmmod  43984
  Copyright terms: Public domain W3C validator