MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimp3ar Structured version   Visualization version   GIF version

Theorem biimp3ar 1472
Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3ar ((𝜑𝜓𝜃) → 𝜒)

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21exbiri 810 . 2 (𝜑 → (𝜓 → (𝜃𝜒)))
323imp 1110 1 ((𝜑𝜓𝜃) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  rmoi  3843  brelrng  5883  fpr3g  8218  frrlem4  8222  dif1enlem  9073  php3  9123  div2sub  11949  nn0p1elfzo  13605  ssfzo12  13662  modltm1p1mod  13830  hashgt23el  14331  repswpfx  14691  abssubge0  15235  qredeu  16569  abvne0  20704  slesolinvbi  22566  basgen2  22874  fcfval  23918  nmne0  24505  ovolfsf  25370  logbprmirr  26704  lgssq  27246  lgssq2  27247  colinearalg  28855  usgr0v  29186  frgr0vb  30207  nv1  30619  adjeq  31879  pridln1  33380  revpfxsfxrev  35093  areacirc  37697  fvopabf4g  37706  exidreslem  37861  hgmapvvlem3  41908  iocmbl  43190  iunconnlem2  44912  ssfz12  47302  m1modmmod  47346
  Copyright terms: Public domain W3C validator