Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpar 479. (Contributed by NM, 2-Jan-2009.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | exbiri 809 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
3 | 2 | 3imp 1111 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: rmoi 3829 brelrng 5862 fpr3g 8132 frrlem4 8136 dif1enlem 8981 php3 9033 div2sub 11850 nn0p1elfzo 13480 ssfzo12 13530 modltm1p1mod 13693 hashgt23el 14188 repswpfx 14547 abssubge0 15088 qredeu 16412 abvne0 20136 slesolinvbi 21879 basgen2 22188 fcfval 23233 nmne0 23824 ovolfsf 24684 logbprmirr 25995 lgssq 26534 lgssq2 26535 colinearalg 27327 usgr0v 27657 frgr0vb 28676 nv1 29086 adjeq 30346 pridln1 31667 revpfxsfxrev 33126 areacirc 35918 fvopabf4g 35927 exidreslem 36083 hgmapvvlem3 40139 iocmbl 41240 iunconnlem2 42768 ssfz12 45050 m1modmmod 46111 |
Copyright terms: Public domain | W3C validator |