| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | exbiri 810 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rmoi 3837 brelrng 5880 fpr3g 8215 frrlem4 8219 dif1enlem 9069 php3 9118 div2sub 11946 nn0p1elfzo 13602 ssfzo12 13659 modltm1p1mod 13830 hashgt23el 14331 repswpfx 14692 abssubge0 15235 qredeu 16569 abvne0 20734 slesolinvbi 22596 basgen2 22904 fcfval 23948 nmne0 24534 ovolfsf 25399 logbprmirr 26733 lgssq 27275 lgssq2 27276 colinearalg 28888 usgr0v 29219 frgr0vb 30243 nv1 30655 adjeq 31915 pridln1 33408 revpfxsfxrev 35160 areacirc 37763 fvopabf4g 37772 exidreslem 37927 hgmapvvlem3 42034 iocmbl 43316 iunconnlem2 45037 ssfz12 47424 m1modmmod 47468 |
| Copyright terms: Public domain | W3C validator |