| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | exbiri 810 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rmoi 3843 brelrng 5883 fpr3g 8218 frrlem4 8222 dif1enlem 9073 php3 9123 div2sub 11949 nn0p1elfzo 13605 ssfzo12 13662 modltm1p1mod 13830 hashgt23el 14331 repswpfx 14691 abssubge0 15235 qredeu 16569 abvne0 20704 slesolinvbi 22566 basgen2 22874 fcfval 23918 nmne0 24505 ovolfsf 25370 logbprmirr 26704 lgssq 27246 lgssq2 27247 colinearalg 28855 usgr0v 29186 frgr0vb 30207 nv1 30619 adjeq 31879 pridln1 33380 revpfxsfxrev 35093 areacirc 37697 fvopabf4g 37706 exidreslem 37861 hgmapvvlem3 41908 iocmbl 43190 iunconnlem2 44912 ssfz12 47302 m1modmmod 47346 |
| Copyright terms: Public domain | W3C validator |