MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimp3ar Structured version   Visualization version   GIF version

Theorem biimp3ar 1469
Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3ar ((𝜑𝜓𝜃) → 𝜒)

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21exbiri 811 . 2 (𝜑 → (𝜓 → (𝜃𝜒)))
323imp 1110 1 ((𝜑𝜓𝜃) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  rmoi  3900  brelrng  5955  fpr3g  8309  frrlem4  8313  dif1enlem  9195  dif1enlemOLD  9196  php3  9247  div2sub  12090  nn0p1elfzo  13739  ssfzo12  13795  modltm1p1mod  13961  hashgt23el  14460  repswpfx  14820  abssubge0  15363  qredeu  16692  abvne0  20837  slesolinvbi  22703  basgen2  23012  fcfval  24057  nmne0  24648  ovolfsf  25520  logbprmirr  26854  lgssq  27396  lgssq2  27397  colinearalg  28940  usgr0v  29273  frgr0vb  30292  nv1  30704  adjeq  31964  pridln1  33451  revpfxsfxrev  35100  areacirc  37700  fvopabf4g  37709  exidreslem  37864  hgmapvvlem3  41908  iocmbl  43202  iunconnlem2  44933  ssfz12  47264  m1modmmod  48371
  Copyright terms: Public domain W3C validator