| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | exbiri 810 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rmoi 3857 brelrng 5908 fpr3g 8267 frrlem4 8271 dif1enlem 9126 dif1enlemOLD 9127 php3 9179 div2sub 12014 nn0p1elfzo 13670 ssfzo12 13727 modltm1p1mod 13895 hashgt23el 14396 repswpfx 14757 abssubge0 15301 qredeu 16635 abvne0 20735 slesolinvbi 22575 basgen2 22883 fcfval 23927 nmne0 24514 ovolfsf 25379 logbprmirr 26713 lgssq 27255 lgssq2 27256 colinearalg 28844 usgr0v 29175 frgr0vb 30199 nv1 30611 adjeq 31871 pridln1 33421 revpfxsfxrev 35110 areacirc 37714 fvopabf4g 37723 exidreslem 37878 hgmapvvlem3 41926 iocmbl 43209 iunconnlem2 44931 ssfz12 47319 m1modmmod 47363 |
| Copyright terms: Public domain | W3C validator |