MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimp3ar Structured version   Visualization version   GIF version

Theorem biimp3ar 1470
Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3ar ((𝜑𝜓𝜃) → 𝜒)

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21exbiri 810 . 2 (𝜑 → (𝜓 → (𝜃𝜒)))
323imp 1111 1 ((𝜑𝜓𝜃) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  rmoi  3913  brelrng  5966  fpr3g  8326  frrlem4  8330  dif1enlem  9222  dif1enlemOLD  9223  php3  9275  div2sub  12119  nn0p1elfzo  13759  ssfzo12  13809  modltm1p1mod  13974  hashgt23el  14473  repswpfx  14833  abssubge0  15376  qredeu  16705  abvne0  20842  slesolinvbi  22708  basgen2  23017  fcfval  24062  nmne0  24653  ovolfsf  25525  logbprmirr  26857  lgssq  27399  lgssq2  27400  colinearalg  28943  usgr0v  29276  frgr0vb  30295  nv1  30707  adjeq  31967  pridln1  33436  revpfxsfxrev  35083  areacirc  37673  fvopabf4g  37682  exidreslem  37837  hgmapvvlem3  41882  iocmbl  43174  iunconnlem2  44906  ssfz12  47229  m1modmmod  48255
  Copyright terms: Public domain W3C validator