MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimp3ar Structured version   Visualization version   GIF version

Theorem biimp3ar 1472
Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3ar ((𝜑𝜓𝜃) → 𝜒)

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21exbiri 810 . 2 (𝜑 → (𝜓 → (𝜃𝜒)))
323imp 1110 1 ((𝜑𝜓𝜃) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  rmoi  3851  brelrng  5894  fpr3g  8241  frrlem4  8245  dif1enlem  9097  dif1enlemOLD  9098  php3  9150  div2sub  11983  nn0p1elfzo  13639  ssfzo12  13696  modltm1p1mod  13864  hashgt23el  14365  repswpfx  14726  abssubge0  15270  qredeu  16604  abvne0  20739  slesolinvbi  22601  basgen2  22909  fcfval  23953  nmne0  24540  ovolfsf  25405  logbprmirr  26739  lgssq  27281  lgssq2  27282  colinearalg  28890  usgr0v  29221  frgr0vb  30242  nv1  30654  adjeq  31914  pridln1  33407  revpfxsfxrev  35096  areacirc  37700  fvopabf4g  37709  exidreslem  37864  hgmapvvlem3  41912  iocmbl  43195  iunconnlem2  44917  ssfz12  47308  m1modmmod  47352
  Copyright terms: Public domain W3C validator