| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | exbiri 810 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rmoi 3851 brelrng 5894 fpr3g 8241 frrlem4 8245 dif1enlem 9097 dif1enlemOLD 9098 php3 9150 div2sub 11983 nn0p1elfzo 13639 ssfzo12 13696 modltm1p1mod 13864 hashgt23el 14365 repswpfx 14726 abssubge0 15270 qredeu 16604 abvne0 20739 slesolinvbi 22601 basgen2 22909 fcfval 23953 nmne0 24540 ovolfsf 25405 logbprmirr 26739 lgssq 27281 lgssq2 27282 colinearalg 28890 usgr0v 29221 frgr0vb 30242 nv1 30654 adjeq 31914 pridln1 33407 revpfxsfxrev 35096 areacirc 37700 fvopabf4g 37709 exidreslem 37864 hgmapvvlem3 41912 iocmbl 43195 iunconnlem2 44917 ssfz12 47308 m1modmmod 47352 |
| Copyright terms: Public domain | W3C validator |