Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | exbiri 807 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
3 | 2 | 3imp 1109 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: rmoi 3828 brelrng 5847 fpr3g 8085 frrlem4 8089 dif1enlem 8908 php3 8959 div2sub 11783 nn0p1elfzo 13411 ssfzo12 13461 modltm1p1mod 13624 hashgt23el 14120 repswpfx 14479 abssubge0 15020 qredeu 16344 abvne0 20068 slesolinvbi 21811 basgen2 22120 fcfval 23165 nmne0 23756 ovolfsf 24616 logbprmirr 25927 lgssq 26466 lgssq2 26467 colinearalg 27259 usgr0v 27589 frgr0vb 28606 nv1 29016 adjeq 30276 pridln1 31597 revpfxsfxrev 33056 areacirc 35849 fvopabf4g 35858 exidreslem 36014 hgmapvvlem3 39918 iocmbl 41024 iunconnlem2 42508 ssfz12 44758 m1modmmod 45819 |
Copyright terms: Public domain | W3C validator |