| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl222anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
| 8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 1, 2, 3, 4, 7, 8 | syl221anc 1383 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anandis 1473 3anandirs 1474 omopth2 8596 omeu 8597 dfac12lem2 10159 xaddass2 13266 xpncan 13267 divdenle 16768 pockthlem 16925 znidomb 21522 tanord1 26498 ang180lem5 26775 isosctrlem3 26782 log2tlbnd 26907 basellem1 27043 perfectlem2 27193 bposlem6 27252 dchrisum0flblem2 27472 pntpbnd1a 27548 mulsproplem1 28071 axcontlem8 28950 xlt2addrd 32736 s2f1 32920 xrge0addass 33011 xrge0npcan 33015 elrgspnlem1 33237 submatminr1 33841 carsgclctunlem2 34351 4atexlemntlpq 40087 4atexlemnclw 40089 trlval2 40182 cdleme0moN 40244 cdleme16b 40298 cdleme16c 40299 cdleme16d 40300 cdleme16e 40301 cdleme17c 40307 cdlemeda 40317 cdleme20h 40335 cdleme20j 40337 cdleme20l2 40340 cdleme21c 40346 cdleme21ct 40348 cdleme22aa 40358 cdleme22cN 40361 cdleme22d 40362 cdleme22e 40363 cdleme22eALTN 40364 cdleme23b 40369 cdleme25a 40372 cdleme25dN 40375 cdleme27N 40388 cdleme28a 40389 cdleme28b 40390 cdleme29ex 40393 cdleme32c 40462 cdleme42k 40503 cdlemg2cex 40610 cdlemg2idN 40615 cdlemg31c 40718 cdlemk5a 40854 cdlemk5 40855 congmul 42991 jm2.25lem1 43022 jm2.26 43026 jm2.27a 43029 infleinflem1 45397 stoweidlem42 46071 |
| Copyright terms: Public domain | W3C validator |