| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl222anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
| 8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 1, 2, 3, 4, 7, 8 | syl221anc 1383 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anandis 1473 3anandirs 1474 omopth2 8499 omeu 8500 dfac12lem2 10036 xaddass2 13149 xpncan 13150 divdenle 16660 pockthlem 16817 znidomb 21499 tanord1 26474 ang180lem5 26751 isosctrlem3 26758 log2tlbnd 26883 basellem1 27019 perfectlem2 27169 bposlem6 27228 dchrisum0flblem2 27448 pntpbnd1a 27524 mulsproplem1 28056 axcontlem8 28950 xlt2addrd 32740 s2f1 32924 xrge0addass 32995 xrge0npcan 32999 elrgspnlem1 33207 submatminr1 33821 carsgclctunlem2 34330 4atexlemntlpq 40113 4atexlemnclw 40115 trlval2 40208 cdleme0moN 40270 cdleme16b 40324 cdleme16c 40325 cdleme16d 40326 cdleme16e 40327 cdleme17c 40333 cdlemeda 40343 cdleme20h 40361 cdleme20j 40363 cdleme20l2 40366 cdleme21c 40372 cdleme21ct 40374 cdleme22aa 40384 cdleme22cN 40387 cdleme22d 40388 cdleme22e 40389 cdleme22eALTN 40390 cdleme23b 40395 cdleme25a 40398 cdleme25dN 40401 cdleme27N 40414 cdleme28a 40415 cdleme28b 40416 cdleme29ex 40419 cdleme32c 40488 cdleme42k 40529 cdlemg2cex 40636 cdlemg2idN 40641 cdlemg31c 40744 cdlemk5a 40880 cdlemk5 40881 congmul 43006 jm2.25lem1 43037 jm2.26 43041 jm2.27a 43044 infleinflem1 45414 stoweidlem42 46086 |
| Copyright terms: Public domain | W3C validator |