| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl222anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
| 8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 1, 2, 3, 4, 7, 8 | syl221anc 1383 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anandis 1473 3anandirs 1474 omopth2 8551 omeu 8552 dfac12lem2 10105 xaddass2 13217 xpncan 13218 divdenle 16726 pockthlem 16883 znidomb 21478 tanord1 26453 ang180lem5 26730 isosctrlem3 26737 log2tlbnd 26862 basellem1 26998 perfectlem2 27148 bposlem6 27207 dchrisum0flblem2 27427 pntpbnd1a 27503 mulsproplem1 28026 axcontlem8 28905 xlt2addrd 32689 s2f1 32873 xrge0addass 32964 xrge0npcan 32968 elrgspnlem1 33200 submatminr1 33807 carsgclctunlem2 34317 4atexlemntlpq 40069 4atexlemnclw 40071 trlval2 40164 cdleme0moN 40226 cdleme16b 40280 cdleme16c 40281 cdleme16d 40282 cdleme16e 40283 cdleme17c 40289 cdlemeda 40299 cdleme20h 40317 cdleme20j 40319 cdleme20l2 40322 cdleme21c 40328 cdleme21ct 40330 cdleme22aa 40340 cdleme22cN 40343 cdleme22d 40344 cdleme22e 40345 cdleme22eALTN 40346 cdleme23b 40351 cdleme25a 40354 cdleme25dN 40357 cdleme27N 40370 cdleme28a 40371 cdleme28b 40372 cdleme29ex 40375 cdleme32c 40444 cdleme42k 40485 cdlemg2cex 40592 cdlemg2idN 40597 cdlemg31c 40700 cdlemk5a 40836 cdlemk5 40837 congmul 42963 jm2.25lem1 42994 jm2.26 42998 jm2.27a 43001 infleinflem1 45373 stoweidlem42 46047 |
| Copyright terms: Public domain | W3C validator |