Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl222anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 1, 2, 3, 4, 7, 8 | syl221anc 1379 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anandis 1469 3anandirs 1470 omopth2 8391 omeu 8392 dfac12lem2 9884 xaddass2 12966 xpncan 12967 divdenle 16434 pockthlem 16587 znidomb 20750 tanord1 25674 ang180lem5 25944 isosctrlem3 25951 log2tlbnd 26076 basellem1 26211 perfectlem2 26359 bposlem6 26418 dchrisum0flblem2 26638 pntpbnd1a 26714 axcontlem8 27320 xlt2addrd 31060 s2f1 31198 xrge0addass 31278 xrge0npcan 31282 submatminr1 31739 carsgclctunlem2 32265 4atexlemntlpq 38061 4atexlemnclw 38063 trlval2 38156 cdleme0moN 38218 cdleme16b 38272 cdleme16c 38273 cdleme16d 38274 cdleme16e 38275 cdleme17c 38281 cdlemeda 38291 cdleme20h 38309 cdleme20j 38311 cdleme20l2 38314 cdleme21c 38320 cdleme21ct 38322 cdleme22aa 38332 cdleme22cN 38335 cdleme22d 38336 cdleme22e 38337 cdleme22eALTN 38338 cdleme23b 38343 cdleme25a 38346 cdleme25dN 38349 cdleme27N 38362 cdleme28a 38363 cdleme28b 38364 cdleme29ex 38367 cdleme32c 38436 cdleme42k 38477 cdlemg2cex 38584 cdlemg2idN 38589 cdlemg31c 38692 cdlemk5a 38828 cdlemk5 38829 congmul 40769 jm2.25lem1 40800 jm2.26 40804 jm2.27a 40807 infleinflem1 42863 stoweidlem42 43537 |
Copyright terms: Public domain | W3C validator |