![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl222anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | 5, 6 | jca 512 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 1, 2, 3, 4, 7, 8 | syl221anc 1381 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: 3anandis 1471 3anandirs 1472 omopth2 8586 omeu 8587 dfac12lem2 10141 xaddass2 13231 xpncan 13232 divdenle 16687 pockthlem 16840 znidomb 21123 tanord1 26053 ang180lem5 26325 isosctrlem3 26332 log2tlbnd 26457 basellem1 26592 perfectlem2 26740 bposlem6 26799 dchrisum0flblem2 27019 pntpbnd1a 27095 mulsproplem1 27582 axcontlem8 28267 xlt2addrd 32009 s2f1 32149 xrge0addass 32229 xrge0npcan 32233 submatminr1 32859 carsgclctunlem2 33387 4atexlemntlpq 39025 4atexlemnclw 39027 trlval2 39120 cdleme0moN 39182 cdleme16b 39236 cdleme16c 39237 cdleme16d 39238 cdleme16e 39239 cdleme17c 39245 cdlemeda 39255 cdleme20h 39273 cdleme20j 39275 cdleme20l2 39278 cdleme21c 39284 cdleme21ct 39286 cdleme22aa 39296 cdleme22cN 39299 cdleme22d 39300 cdleme22e 39301 cdleme22eALTN 39302 cdleme23b 39307 cdleme25a 39310 cdleme25dN 39313 cdleme27N 39326 cdleme28a 39327 cdleme28b 39328 cdleme29ex 39331 cdleme32c 39400 cdleme42k 39441 cdlemg2cex 39548 cdlemg2idN 39553 cdlemg31c 39656 cdlemk5a 39792 cdlemk5 39793 congmul 41788 jm2.25lem1 41819 jm2.26 41823 jm2.27a 41826 infleinflem1 44159 stoweidlem42 44837 |
Copyright terms: Public domain | W3C validator |