![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl222anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | 5, 6 | jca 512 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 1, 2, 3, 4, 7, 8 | syl221anc 1381 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: 3anandis 1471 3anandirs 1472 omopth2 8580 omeu 8581 dfac12lem2 10135 xaddass2 13225 xpncan 13226 divdenle 16681 pockthlem 16834 znidomb 21108 tanord1 26037 ang180lem5 26307 isosctrlem3 26314 log2tlbnd 26439 basellem1 26574 perfectlem2 26722 bposlem6 26781 dchrisum0flblem2 27001 pntpbnd1a 27077 mulsproplem1 27561 axcontlem8 28218 xlt2addrd 31958 s2f1 32098 xrge0addass 32178 xrge0npcan 32182 submatminr1 32778 carsgclctunlem2 33306 4atexlemntlpq 38927 4atexlemnclw 38929 trlval2 39022 cdleme0moN 39084 cdleme16b 39138 cdleme16c 39139 cdleme16d 39140 cdleme16e 39141 cdleme17c 39147 cdlemeda 39157 cdleme20h 39175 cdleme20j 39177 cdleme20l2 39180 cdleme21c 39186 cdleme21ct 39188 cdleme22aa 39198 cdleme22cN 39201 cdleme22d 39202 cdleme22e 39203 cdleme22eALTN 39204 cdleme23b 39209 cdleme25a 39212 cdleme25dN 39215 cdleme27N 39228 cdleme28a 39229 cdleme28b 39230 cdleme29ex 39233 cdleme32c 39302 cdleme42k 39343 cdlemg2cex 39450 cdlemg2idN 39455 cdlemg31c 39558 cdlemk5a 39694 cdlemk5 39695 congmul 41691 jm2.25lem1 41722 jm2.26 41726 jm2.27a 41729 infleinflem1 44066 stoweidlem42 44744 |
Copyright terms: Public domain | W3C validator |