| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl222anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
| 8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 1, 2, 3, 4, 7, 8 | syl221anc 1383 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anandis 1473 3anandirs 1474 omopth2 8507 omeu 8508 dfac12lem2 10045 xaddass2 13153 xpncan 13154 divdenle 16664 pockthlem 16821 znidomb 21502 tanord1 26476 ang180lem5 26753 isosctrlem3 26760 log2tlbnd 26885 basellem1 27021 perfectlem2 27171 bposlem6 27230 dchrisum0flblem2 27450 pntpbnd1a 27526 mulsproplem1 28058 axcontlem8 28953 xlt2addrd 32748 s2f1 32935 xrge0addass 33006 xrge0npcan 33010 elrgspnlem1 33218 submatminr1 33846 carsgclctunlem2 34355 4atexlemntlpq 40190 4atexlemnclw 40192 trlval2 40285 cdleme0moN 40347 cdleme16b 40401 cdleme16c 40402 cdleme16d 40403 cdleme16e 40404 cdleme17c 40410 cdlemeda 40420 cdleme20h 40438 cdleme20j 40440 cdleme20l2 40443 cdleme21c 40449 cdleme21ct 40451 cdleme22aa 40461 cdleme22cN 40464 cdleme22d 40465 cdleme22e 40466 cdleme22eALTN 40467 cdleme23b 40472 cdleme25a 40475 cdleme25dN 40478 cdleme27N 40491 cdleme28a 40492 cdleme28b 40493 cdleme29ex 40496 cdleme32c 40565 cdleme42k 40606 cdlemg2cex 40713 cdlemg2idN 40718 cdlemg31c 40821 cdlemk5a 40957 cdlemk5 40958 congmul 43087 jm2.25lem1 43118 jm2.26 43122 jm2.27a 43125 infleinflem1 45495 stoweidlem42 46167 |
| Copyright terms: Public domain | W3C validator |