![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl222anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 1, 2, 3, 4, 7, 8 | syl221anc 1381 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3anandis 1471 3anandirs 1472 omopth2 8640 omeu 8641 dfac12lem2 10214 xaddass2 13312 xpncan 13313 divdenle 16796 pockthlem 16952 znidomb 21603 tanord1 26597 ang180lem5 26874 isosctrlem3 26881 log2tlbnd 27006 basellem1 27142 perfectlem2 27292 bposlem6 27351 dchrisum0flblem2 27571 pntpbnd1a 27647 mulsproplem1 28160 axcontlem8 29004 xlt2addrd 32765 s2f1 32911 xrge0addass 33002 xrge0npcan 33006 submatminr1 33756 carsgclctunlem2 34284 4atexlemntlpq 40025 4atexlemnclw 40027 trlval2 40120 cdleme0moN 40182 cdleme16b 40236 cdleme16c 40237 cdleme16d 40238 cdleme16e 40239 cdleme17c 40245 cdlemeda 40255 cdleme20h 40273 cdleme20j 40275 cdleme20l2 40278 cdleme21c 40284 cdleme21ct 40286 cdleme22aa 40296 cdleme22cN 40299 cdleme22d 40300 cdleme22e 40301 cdleme22eALTN 40302 cdleme23b 40307 cdleme25a 40310 cdleme25dN 40313 cdleme27N 40326 cdleme28a 40327 cdleme28b 40328 cdleme29ex 40331 cdleme32c 40400 cdleme42k 40441 cdlemg2cex 40548 cdlemg2idN 40553 cdlemg31c 40656 cdlemk5a 40792 cdlemk5 40793 congmul 42924 jm2.25lem1 42955 jm2.26 42959 jm2.27a 42962 infleinflem1 45285 stoweidlem42 45963 |
Copyright terms: Public domain | W3C validator |