| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl222anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
| 8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 1, 2, 3, 4, 7, 8 | syl221anc 1383 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anandis 1473 3anandirs 1474 omopth2 8509 omeu 8510 dfac12lem2 10058 xaddass2 13170 xpncan 13171 divdenle 16678 pockthlem 16835 znidomb 21486 tanord1 26462 ang180lem5 26739 isosctrlem3 26746 log2tlbnd 26871 basellem1 27007 perfectlem2 27157 bposlem6 27216 dchrisum0flblem2 27436 pntpbnd1a 27512 mulsproplem1 28042 axcontlem8 28934 xlt2addrd 32715 s2f1 32899 xrge0addass 32983 xrge0npcan 32987 elrgspnlem1 33195 submatminr1 33779 carsgclctunlem2 34289 4atexlemntlpq 40050 4atexlemnclw 40052 trlval2 40145 cdleme0moN 40207 cdleme16b 40261 cdleme16c 40262 cdleme16d 40263 cdleme16e 40264 cdleme17c 40270 cdlemeda 40280 cdleme20h 40298 cdleme20j 40300 cdleme20l2 40303 cdleme21c 40309 cdleme21ct 40311 cdleme22aa 40321 cdleme22cN 40324 cdleme22d 40325 cdleme22e 40326 cdleme22eALTN 40327 cdleme23b 40332 cdleme25a 40335 cdleme25dN 40338 cdleme27N 40351 cdleme28a 40352 cdleme28b 40353 cdleme29ex 40356 cdleme32c 40425 cdleme42k 40466 cdlemg2cex 40573 cdlemg2idN 40578 cdlemg31c 40681 cdlemk5a 40817 cdlemk5 40818 congmul 42943 jm2.25lem1 42974 jm2.26 42978 jm2.27a 42981 infleinflem1 45353 stoweidlem42 46027 |
| Copyright terms: Public domain | W3C validator |