Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl222anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | 5, 6 | jca 513 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 1, 2, 3, 4, 7, 8 | syl221anc 1381 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: 3anandis 1471 3anandirs 1472 omopth2 8446 omeu 8447 dfac12lem2 9946 xaddass2 13030 xpncan 13031 divdenle 16498 pockthlem 16651 znidomb 20814 tanord1 25738 ang180lem5 26008 isosctrlem3 26015 log2tlbnd 26140 basellem1 26275 perfectlem2 26423 bposlem6 26482 dchrisum0flblem2 26702 pntpbnd1a 26778 axcontlem8 27384 xlt2addrd 31126 s2f1 31264 xrge0addass 31344 xrge0npcan 31348 submatminr1 31805 carsgclctunlem2 32331 4atexlemntlpq 38124 4atexlemnclw 38126 trlval2 38219 cdleme0moN 38281 cdleme16b 38335 cdleme16c 38336 cdleme16d 38337 cdleme16e 38338 cdleme17c 38344 cdlemeda 38354 cdleme20h 38372 cdleme20j 38374 cdleme20l2 38377 cdleme21c 38383 cdleme21ct 38385 cdleme22aa 38395 cdleme22cN 38398 cdleme22d 38399 cdleme22e 38400 cdleme22eALTN 38401 cdleme23b 38406 cdleme25a 38409 cdleme25dN 38412 cdleme27N 38425 cdleme28a 38426 cdleme28b 38427 cdleme29ex 38430 cdleme32c 38499 cdleme42k 38540 cdlemg2cex 38647 cdlemg2idN 38652 cdlemg31c 38755 cdlemk5a 38891 cdlemk5 38892 congmul 40827 jm2.25lem1 40858 jm2.26 40862 jm2.27a 40865 infleinflem1 42957 stoweidlem42 43632 |
Copyright terms: Public domain | W3C validator |