| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl222anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
| 8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 1, 2, 3, 4, 7, 8 | syl221anc 1383 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anandis 1473 3anandirs 1474 omopth2 8548 omeu 8549 dfac12lem2 10098 xaddass2 13210 xpncan 13211 divdenle 16719 pockthlem 16876 znidomb 21471 tanord1 26446 ang180lem5 26723 isosctrlem3 26730 log2tlbnd 26855 basellem1 26991 perfectlem2 27141 bposlem6 27200 dchrisum0flblem2 27420 pntpbnd1a 27496 mulsproplem1 28019 axcontlem8 28898 xlt2addrd 32682 s2f1 32866 xrge0addass 32957 xrge0npcan 32961 elrgspnlem1 33193 submatminr1 33800 carsgclctunlem2 34310 4atexlemntlpq 40062 4atexlemnclw 40064 trlval2 40157 cdleme0moN 40219 cdleme16b 40273 cdleme16c 40274 cdleme16d 40275 cdleme16e 40276 cdleme17c 40282 cdlemeda 40292 cdleme20h 40310 cdleme20j 40312 cdleme20l2 40315 cdleme21c 40321 cdleme21ct 40323 cdleme22aa 40333 cdleme22cN 40336 cdleme22d 40337 cdleme22e 40338 cdleme22eALTN 40339 cdleme23b 40344 cdleme25a 40347 cdleme25dN 40350 cdleme27N 40363 cdleme28a 40364 cdleme28b 40365 cdleme29ex 40368 cdleme32c 40437 cdleme42k 40478 cdlemg2cex 40585 cdlemg2idN 40590 cdlemg31c 40693 cdlemk5a 40829 cdlemk5 40830 congmul 42956 jm2.25lem1 42987 jm2.26 42991 jm2.27a 42994 infleinflem1 45366 stoweidlem42 46040 |
| Copyright terms: Public domain | W3C validator |