MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl222anc Structured version   Visualization version   GIF version

Theorem syl222anc 1384
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl222anc.7 (((𝜓𝜒) ∧ (𝜃𝜏) ∧ (𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl222anc (𝜑𝜎)

Proof of Theorem syl222anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
75, 6jca 511 . 2 (𝜑 → (𝜂𝜁))
8 syl222anc.7 . 2 (((𝜓𝜒) ∧ (𝜃𝜏) ∧ (𝜂𝜁)) → 𝜎)
91, 2, 3, 4, 7, 8syl221anc 1379 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  3anandis  1469  3anandirs  1470  omopth2  8391  omeu  8392  dfac12lem2  9884  xaddass2  12966  xpncan  12967  divdenle  16434  pockthlem  16587  znidomb  20750  tanord1  25674  ang180lem5  25944  isosctrlem3  25951  log2tlbnd  26076  basellem1  26211  perfectlem2  26359  bposlem6  26418  dchrisum0flblem2  26638  pntpbnd1a  26714  axcontlem8  27320  xlt2addrd  31060  s2f1  31198  xrge0addass  31278  xrge0npcan  31282  submatminr1  31739  carsgclctunlem2  32265  4atexlemntlpq  38061  4atexlemnclw  38063  trlval2  38156  cdleme0moN  38218  cdleme16b  38272  cdleme16c  38273  cdleme16d  38274  cdleme16e  38275  cdleme17c  38281  cdlemeda  38291  cdleme20h  38309  cdleme20j  38311  cdleme20l2  38314  cdleme21c  38320  cdleme21ct  38322  cdleme22aa  38332  cdleme22cN  38335  cdleme22d  38336  cdleme22e  38337  cdleme22eALTN  38338  cdleme23b  38343  cdleme25a  38346  cdleme25dN  38349  cdleme27N  38362  cdleme28a  38363  cdleme28b  38364  cdleme29ex  38367  cdleme32c  38436  cdleme42k  38477  cdlemg2cex  38584  cdlemg2idN  38589  cdlemg31c  38692  cdlemk5a  38828  cdlemk5  38829  congmul  40769  jm2.25lem1  40800  jm2.26  40804  jm2.27a  40807  infleinflem1  42863  stoweidlem42  43537
  Copyright terms: Public domain W3C validator