| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl222anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
| 8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 1, 2, 3, 4, 7, 8 | syl221anc 1383 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: 3anandis 1473 3anandirs 1474 omopth2 8622 omeu 8623 dfac12lem2 10185 xaddass2 13292 xpncan 13293 divdenle 16786 pockthlem 16943 znidomb 21580 tanord1 26579 ang180lem5 26856 isosctrlem3 26863 log2tlbnd 26988 basellem1 27124 perfectlem2 27274 bposlem6 27333 dchrisum0flblem2 27553 pntpbnd1a 27629 mulsproplem1 28142 axcontlem8 28986 xlt2addrd 32762 s2f1 32929 xrge0addass 33021 xrge0npcan 33025 elrgspnlem1 33246 submatminr1 33809 carsgclctunlem2 34321 4atexlemntlpq 40070 4atexlemnclw 40072 trlval2 40165 cdleme0moN 40227 cdleme16b 40281 cdleme16c 40282 cdleme16d 40283 cdleme16e 40284 cdleme17c 40290 cdlemeda 40300 cdleme20h 40318 cdleme20j 40320 cdleme20l2 40323 cdleme21c 40329 cdleme21ct 40331 cdleme22aa 40341 cdleme22cN 40344 cdleme22d 40345 cdleme22e 40346 cdleme22eALTN 40347 cdleme23b 40352 cdleme25a 40355 cdleme25dN 40358 cdleme27N 40371 cdleme28a 40372 cdleme28b 40373 cdleme29ex 40376 cdleme32c 40445 cdleme42k 40486 cdlemg2cex 40593 cdlemg2idN 40598 cdlemg31c 40701 cdlemk5a 40837 cdlemk5 40838 congmul 42979 jm2.25lem1 43010 jm2.26 43014 jm2.27a 43017 infleinflem1 45381 stoweidlem42 46057 |
| Copyright terms: Public domain | W3C validator |