| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by Jeff Hankins, 17-Nov-2009.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜃) → 𝜃) | |
| 2 | 1 | 3ad2antr3 1191 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
| Copyright terms: Public domain | W3C validator |