Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3anidm12p1 Structured version   Visualization version   GIF version

Theorem 3anidm12p1 41499
 Description: A deduction unionizing a non-unionized collection of virtual hypotheses. 3anidm12 1416 denotes the deduction which would have been named uun112 if it did not pre-exist in set.mm. This second permutation's name is based on this pre-existing name. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
3anidm12p1.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm12p1 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12p1
StepHypRef Expression
1 3anidm12p1.1 . 2 ((𝜑𝜓𝜑) → 𝜒)
213anidm13 1417 1 ((𝜑𝜓) → 𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator