| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm12 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm12.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm12 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm12.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expib 1122 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | anabsi5 669 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anidm13 1422 syl2an3an 1424 dedth3v 4552 fovcl 7517 nncan 11451 divid 11868 dividOLD 11869 sqdivid 14087 subsq 14175 o1lo1 15503 retancl 16110 tanneg 16116 gcd0id 16489 coprm 16681 ablonncan 30485 kbpj 31885 xdivid 32848 xrsmulgzz 32947 f1resrcmplf1dlem 35076 expgrowthi 44322 dvconstbi 44323 3ornot23 44499 3anidm12p2 44796 sinhpcosh 49726 reseccl 49739 recsccl 49740 recotcl 49741 onetansqsecsq 49747 |
| Copyright terms: Public domain | W3C validator |