![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anidm12 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm12.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
3anidm12 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm12.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | 3expib 1122 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
3 | 2 | anabsi5 668 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3anidm13 1420 syl2an3an 1422 dedth3v 4611 fovcl 7578 nncan 11565 divid 11980 dividOLD 11981 sqdivid 14172 subsq 14259 o1lo1 15583 retancl 16190 tanneg 16196 gcd0id 16565 coprm 16758 ablonncan 30588 kbpj 31988 xdivid 32892 xrsmulgzz 32992 f1resrcmplf1dlem 35062 expgrowthi 44302 dvconstbi 44303 3ornot23 44480 3anidm12p2 44778 sinhpcosh 48832 reseccl 48845 recsccl 48846 recotcl 48847 onetansqsecsq 48853 |
Copyright terms: Public domain | W3C validator |