MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm12 Structured version   Visualization version   GIF version

Theorem 3anidm12 1420
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((𝜑𝜑𝜓) → 𝜒)
Assertion
Ref Expression
3anidm12 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((𝜑𝜑𝜓) → 𝜒)
213expib 1122 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 669 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3anidm13  1421  syl2an3an  1423  dedth3v  4588  fovcl  7562  nncan  11539  divid  11954  dividOLD  11955  sqdivid  14163  subsq  14250  o1lo1  15574  retancl  16179  tanneg  16185  gcd0id  16557  coprm  16749  ablonncan  30576  kbpj  31976  xdivid  32911  xrsmulgzz  33012  f1resrcmplf1dlem  35101  expgrowthi  44357  dvconstbi  44358  3ornot23  44534  3anidm12p2  44832  sinhpcosh  49314  reseccl  49327  recsccl  49328  recotcl  49329  onetansqsecsq  49335
  Copyright terms: Public domain W3C validator