MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm12 Structured version   Visualization version   GIF version

Theorem 3anidm12 1419
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((𝜑𝜑𝜓) → 𝜒)
Assertion
Ref Expression
3anidm12 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((𝜑𝜑𝜓) → 𝜒)
213expib 1122 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 668 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  3anidm13  1420  syl2an3an  1422  dedth3v  4611  fovcl  7578  nncan  11565  divid  11980  dividOLD  11981  sqdivid  14172  subsq  14259  o1lo1  15583  retancl  16190  tanneg  16196  gcd0id  16565  coprm  16758  ablonncan  30588  kbpj  31988  xdivid  32892  xrsmulgzz  32992  f1resrcmplf1dlem  35062  expgrowthi  44302  dvconstbi  44303  3ornot23  44480  3anidm12p2  44778  sinhpcosh  48832  reseccl  48845  recsccl  48846  recotcl  48847  onetansqsecsq  48853
  Copyright terms: Public domain W3C validator