MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm12 Structured version   Visualization version   GIF version

Theorem 3anidm12 1417
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((𝜑𝜑𝜓) → 𝜒)
Assertion
Ref Expression
3anidm12 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((𝜑𝜑𝜓) → 𝜒)
213expib 1120 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 665 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  3anidm13  1418  syl2an3an  1420  dedth3v  4519  nncan  11180  divid  11592  sqdivid  13770  subsq  13854  o1lo1  15174  retancl  15779  tanneg  15785  gcd0id  16154  coprm  16344  ablonncan  28819  kbpj  30219  xdivid  31104  xrsmulgzz  31189  f1resrcmplf1dlem  32958  expgrowthi  41840  dvconstbi  41841  3ornot23  42018  3anidm12p2  42316  sinhpcosh  46328  reseccl  46341  recsccl  46342  recotcl  46343  onetansqsecsq  46349
  Copyright terms: Public domain W3C validator