MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm12 Structured version   Visualization version   GIF version

Theorem 3anidm12 1417
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((𝜑𝜑𝜓) → 𝜒)
Assertion
Ref Expression
3anidm12 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((𝜑𝜑𝜓) → 𝜒)
213expib 1120 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 665 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087
This theorem is referenced by:  3anidm13  1418  syl2an3an  1420  dedth3v  4590  fovcl  7539  nncan  11493  divid  11905  sqdivid  14091  subsq  14178  o1lo1  15485  retancl  16089  tanneg  16095  gcd0id  16464  coprm  16652  ablonncan  30076  kbpj  31476  xdivid  32361  xrsmulgzz  32446  f1resrcmplf1dlem  34387  expgrowthi  43394  dvconstbi  43395  3ornot23  43572  3anidm12p2  43870  sinhpcosh  47872  reseccl  47885  recsccl  47886  recotcl  47887  onetansqsecsq  47893
  Copyright terms: Public domain W3C validator