MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm12 Structured version   Visualization version   GIF version

Theorem 3anidm12 1421
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((𝜑𝜑𝜓) → 𝜒)
Assertion
Ref Expression
3anidm12 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((𝜑𝜑𝜓) → 𝜒)
213expib 1122 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 669 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3anidm13  1422  syl2an3an  1424  dedth3v  4552  fovcl  7517  nncan  11451  divid  11868  dividOLD  11869  sqdivid  14087  subsq  14175  o1lo1  15503  retancl  16110  tanneg  16116  gcd0id  16489  coprm  16681  ablonncan  30485  kbpj  31885  xdivid  32848  xrsmulgzz  32947  f1resrcmplf1dlem  35076  expgrowthi  44322  dvconstbi  44323  3ornot23  44499  3anidm12p2  44796  sinhpcosh  49726  reseccl  49739  recsccl  49740  recotcl  49741  onetansqsecsq  49747
  Copyright terms: Public domain W3C validator