MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm12 Structured version   Visualization version   GIF version

Theorem 3anidm12 1421
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((𝜑𝜑𝜓) → 𝜒)
Assertion
Ref Expression
3anidm12 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((𝜑𝜑𝜓) → 𝜒)
213expib 1122 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 669 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3anidm13  1422  syl2an3an  1424  dedth3v  4536  fovcl  7474  nncan  11390  divid  11807  dividOLD  11808  sqdivid  14029  subsq  14117  o1lo1  15444  retancl  16051  tanneg  16057  gcd0id  16430  coprm  16622  ablonncan  30536  kbpj  31936  xdivid  32908  xrsmulgzz  32990  f1resrcmplf1dlem  35098  expgrowthi  44425  dvconstbi  44426  3ornot23  44601  3anidm12p2  44898  sinhpcosh  49840  reseccl  49853  recsccl  49854  recotcl  49855  onetansqsecsq  49861
  Copyright terms: Public domain W3C validator