MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm12 Structured version   Visualization version   GIF version

Theorem 3anidm12 1421
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((𝜑𝜑𝜓) → 𝜒)
Assertion
Ref Expression
3anidm12 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((𝜑𝜑𝜓) → 𝜒)
213expib 1122 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 669 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3anidm13  1422  syl2an3an  1424  dedth3v  4569  fovcl  7540  nncan  11517  divid  11932  dividOLD  11933  sqdivid  14145  subsq  14233  o1lo1  15558  retancl  16165  tanneg  16171  gcd0id  16543  coprm  16735  ablonncan  30542  kbpj  31942  xdivid  32907  xrsmulgzz  33006  f1resrcmplf1dlem  35122  expgrowthi  44324  dvconstbi  44325  3ornot23  44501  3anidm12p2  44798  sinhpcosh  49571  reseccl  49584  recsccl  49585  recotcl  49586  onetansqsecsq  49592
  Copyright terms: Public domain W3C validator