Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anidm12 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm12.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
3anidm12 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm12.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | 3expib 1120 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
3 | 2 | anabsi5 665 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anidm13 1418 syl2an3an 1420 dedth3v 4519 nncan 11180 divid 11592 sqdivid 13770 subsq 13854 o1lo1 15174 retancl 15779 tanneg 15785 gcd0id 16154 coprm 16344 ablonncan 28819 kbpj 30219 xdivid 31104 xrsmulgzz 31189 f1resrcmplf1dlem 32958 expgrowthi 41840 dvconstbi 41841 3ornot23 42018 3anidm12p2 42316 sinhpcosh 46328 reseccl 46341 recsccl 46342 recotcl 46343 onetansqsecsq 46349 |
Copyright terms: Public domain | W3C validator |