| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm12 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm12.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm12 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm12.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expib 1122 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | anabsi5 669 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anidm13 1422 syl2an3an 1424 dedth3v 4536 fovcl 7474 nncan 11390 divid 11807 dividOLD 11808 sqdivid 14029 subsq 14117 o1lo1 15444 retancl 16051 tanneg 16057 gcd0id 16430 coprm 16622 ablonncan 30536 kbpj 31936 xdivid 32908 xrsmulgzz 32990 f1resrcmplf1dlem 35098 expgrowthi 44425 dvconstbi 44426 3ornot23 44601 3anidm12p2 44898 sinhpcosh 49840 reseccl 49853 recsccl 49854 recotcl 49855 onetansqsecsq 49861 |
| Copyright terms: Public domain | W3C validator |