| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm12 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm12.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm12 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm12.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expib 1122 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | anabsi5 669 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anidm13 1422 syl2an3an 1424 dedth3v 4540 fovcl 7477 nncan 11393 divid 11810 dividOLD 11811 sqdivid 14029 subsq 14117 o1lo1 15444 retancl 16051 tanneg 16057 gcd0id 16430 coprm 16622 ablonncan 30500 kbpj 31900 xdivid 32869 xrsmulgzz 32964 f1resrcmplf1dlem 35059 expgrowthi 44316 dvconstbi 44317 3ornot23 44493 3anidm12p2 44790 sinhpcosh 49735 reseccl 49748 recsccl 49749 recotcl 49750 onetansqsecsq 49756 |
| Copyright terms: Public domain | W3C validator |