MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm12 Structured version   Visualization version   GIF version

Theorem 3anidm12 1421
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((𝜑𝜑𝜓) → 𝜒)
Assertion
Ref Expression
3anidm12 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((𝜑𝜑𝜓) → 𝜒)
213expib 1122 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 669 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3anidm13  1422  syl2an3an  1424  dedth3v  4540  fovcl  7477  nncan  11393  divid  11810  dividOLD  11811  sqdivid  14029  subsq  14117  o1lo1  15444  retancl  16051  tanneg  16057  gcd0id  16430  coprm  16622  ablonncan  30500  kbpj  31900  xdivid  32869  xrsmulgzz  32964  f1resrcmplf1dlem  35059  expgrowthi  44316  dvconstbi  44317  3ornot23  44493  3anidm12p2  44790  sinhpcosh  49735  reseccl  49748  recsccl  49749  recotcl  49750  onetansqsecsq  49756
  Copyright terms: Public domain W3C validator