| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm12 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm12.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm12 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm12.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expib 1122 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | anabsi5 669 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anidm13 1422 syl2an3an 1424 dedth3v 4569 fovcl 7540 nncan 11517 divid 11932 dividOLD 11933 sqdivid 14145 subsq 14233 o1lo1 15558 retancl 16165 tanneg 16171 gcd0id 16543 coprm 16735 ablonncan 30542 kbpj 31942 xdivid 32907 xrsmulgzz 33006 f1resrcmplf1dlem 35122 expgrowthi 44324 dvconstbi 44325 3ornot23 44501 3anidm12p2 44798 sinhpcosh 49571 reseccl 49584 recsccl 49585 recotcl 49586 onetansqsecsq 49592 |
| Copyright terms: Public domain | W3C validator |