| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm12 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm12.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm12 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm12.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expib 1122 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | anabsi5 669 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anidm13 1422 syl2an3an 1424 dedth3v 4548 fovcl 7497 nncan 11427 divid 11844 dividOLD 11845 sqdivid 14063 subsq 14151 o1lo1 15479 retancl 16086 tanneg 16092 gcd0id 16465 coprm 16657 ablonncan 30535 kbpj 31935 xdivid 32898 xrsmulgzz 32993 f1resrcmplf1dlem 35069 expgrowthi 44315 dvconstbi 44316 3ornot23 44492 3anidm12p2 44789 sinhpcosh 49722 reseccl 49735 recsccl 49736 recotcl 49737 onetansqsecsq 49743 |
| Copyright terms: Public domain | W3C validator |