Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anidm12 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm12.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
3anidm12 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm12.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | 3expib 1123 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
3 | 2 | anabsi5 669 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: 3anidm13 1421 syl2an3an 1423 dedth3v 4478 nncan 10996 divid 11408 sqdivid 13583 subsq 13667 o1lo1 14987 retancl 15590 tanneg 15596 gcd0id 15965 coprm 16155 ablonncan 28494 kbpj 29894 xdivid 30780 xrsmulgzz 30867 f1resrcmplf1dlem 32632 expgrowthi 41512 dvconstbi 41513 3ornot23 41690 3anidm12p2 41988 sinhpcosh 45925 reseccl 45938 recsccl 45939 recotcl 45940 onetansqsecsq 45946 |
Copyright terms: Public domain | W3C validator |