| Metamath
Proof Explorer Theorem List (p. 444 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dvgrat 44301* | Ratio test for divergence of a complex infinite series. See e.g. remark "if (abs‘((𝑎‘(𝑛 + 1)) / (𝑎‘𝑛))) ≥ 1 for all large n..." in https://en.wikipedia.org/wiki/Ratio_test#The_test. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ ) | ||
| Theorem | cvgdvgrat 44302* |
Ratio test for convergence and divergence of a complex infinite series.
If the ratio 𝑅 of the absolute values of successive
terms in an
infinite sequence 𝐹 converges to less than one, then the
infinite
sum of the terms of 𝐹 converges to a complex number; and
if 𝑅
converges greater then the sum diverges. This combined form of
cvgrat 15849 and dvgrat 44301 directly uses the limit of the ratio.
(It also demonstrates how to use climi2 15477 and absltd 15398 to transform a limit to an inequality cf. https://math.stackexchange.com/q/2215191 15398, and how to use r19.29a 3141 in a similar fashion to Mario Carneiro's proof sketch with rexlimdva 3134 at https://groups.google.com/g/metamath/c/2RPikOiXLMo 3134.) (Contributed by Steve Rodriguez, 28-Feb-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ≠ 0) & ⊢ 𝑅 = (𝑘 ∈ 𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑅 ⇝ 𝐿) & ⊢ (𝜑 → 𝐿 ≠ 1) ⇒ ⊢ (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ )) | ||
| Theorem | radcnvrat 44303* | Let 𝐿 be the limit, if one exists, of the ratio (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))) (as in the ratio test cvgdvgrat 44302) as 𝑘 increases. Then the radius of convergence of power series Σ𝑛 ∈ ℕ0((𝐴‘𝑛) · (𝑥↑𝑛)) is (1 / 𝐿) if 𝐿 is nonzero. Proof "The limit involved in the ratio test..." in https://en.wikipedia.org/wiki/Radius_of_convergence 44302 —a few lines that evidently hide quite an involved process to confirm. (Contributed by Steve Rodriguez, 8-Mar-2020.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴‘𝑘) ≠ 0) & ⊢ (𝜑 → 𝐷 ⇝ 𝐿) & ⊢ (𝜑 → 𝐿 ≠ 0) ⇒ ⊢ (𝜑 → 𝑅 = (1 / 𝐿)) | ||
| Theorem | reldvds 44304 | The divides relation is in fact a relation. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ Rel ∥ | ||
| Theorem | nznngen 44305 | All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) | ||
| Theorem | nzss 44306 | The set of multiples of m, mℤ, is a subset of those of n, nℤ, iff n divides m. Lemma 2.1(a) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑀)) | ||
| Theorem | nzin 44307 | The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) | ||
| Theorem | nzprmdif 44308 | Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℙ) & ⊢ (𝜑 → 𝑀 ≠ 𝑁) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) | ||
| Theorem | hashnzfz 44309 | Special case of hashdvds 16745: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) ⇒ ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) | ||
| Theorem | hashnzfz2 44310 | Special case of hashnzfz 44309: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) | ||
| Theorem | hashnzfzclim 44311* | As the upper bound 𝐾 of the constraint interval (𝐽...𝐾) in hashnzfz 44309 increases, the resulting count of multiples tends to (𝐾 / 𝑀) —that is, there are approximately (𝐾 / 𝑀) multiples of 𝑀 in a finite interval of integers. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀)) | ||
| Theorem | caofcan 44312* | Transfer a cancellation law like mulcan 11815 to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑇) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧)) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f 𝑅𝐻) ↔ 𝐺 = 𝐻)) | ||
| Theorem | ofsubid 44313 | Function analogue of subid 11441. (Contributed by Steve Rodriguez, 5-Nov-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∘f − 𝐹) = (𝐴 × {0})) | ||
| Theorem | ofmul12 44314 | Function analogue of mul12 11339. (Contributed by Steve Rodriguez, 13-Nov-2015.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹 ∘f · (𝐺 ∘f · 𝐻)) = (𝐺 ∘f · (𝐹 ∘f · 𝐻))) | ||
| Theorem | ofdivrec 44315 | Function analogue of divrec 11853, a division analogue of ofnegsub 12184. (Contributed by Steve Rodriguez, 3-Nov-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹 ∘f · ((𝐴 × {1}) ∘f / 𝐺)) = (𝐹 ∘f / 𝐺)) | ||
| Theorem | ofdivcan4 44316 | Function analogue of divcan4 11864. (Contributed by Steve Rodriguez, 4-Nov-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐹 ∘f · 𝐺) ∘f / 𝐺) = 𝐹) | ||
| Theorem | ofdivdiv2 44317 | Function analogue of divdiv2 11894. (Contributed by Steve Rodriguez, 23-Nov-2015.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹 ∘f / (𝐺 ∘f / 𝐻)) = ((𝐹 ∘f · 𝐻) ∘f / 𝐺)) | ||
| Theorem | lhe4.4ex1a 44318 | Example of the Fundamental Theorem of Calculus, part two (ftc2 25951): ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3). Section 4.4 example 1a of [LarsonHostetlerEdwards] p. 311. (The book teaches ftc2 25951 as simply the "Fundamental Theorem of Calculus", then ftc1 25949 as the "Second Fundamental Theorem of Calculus".) (Contributed by Steve Rodriguez, 28-Oct-2015.) (Revised by Steve Rodriguez, 31-Oct-2015.) |
| ⊢ ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3) | ||
| Theorem | dvsconst 44319 | Derivative of a constant function on the real or complex numbers. The function may return a complex 𝐴 even if 𝑆 is ℝ. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
| ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) | ||
| Theorem | dvsid 44320 | Derivative of the identity function on the real or complex numbers. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
| ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ( I ↾ 𝑆)) = (𝑆 × {1})) | ||
| Theorem | dvsef 44321 | Derivative of the exponential function on the real or complex numbers. (Contributed by Steve Rodriguez, 12-Nov-2015.) |
| ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (exp ↾ 𝑆)) = (exp ↾ 𝑆)) | ||
| Theorem | expgrowthi 44322* | Exponential growth and decay model. See expgrowth 44324 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐾 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝑌 = (𝑡 ∈ 𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡)))) ⇒ ⊢ (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) | ||
| Theorem | dvconstbi 44323* | The derivative of a function on 𝑆 is zero iff it is a constant function. Roughly a biconditional 𝑆 analogue of dvconst 25818 and dveq0 25905. Corresponds to integration formula "∫0 d𝑥 = 𝐶 " in section 4.1 of [LarsonHostetlerEdwards] p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑌:𝑆⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝑌) = 𝑆) ⇒ ⊢ (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐}))) | ||
| Theorem | expgrowth 44324* |
Exponential growth and decay model. The derivative of a function y of
variable t equals a constant k times y itself, iff
y equals some
constant C times the exponential of kt. This theorem and
expgrowthi 44322 illustrate one of the simplest and most
crucial classes of
differential equations, equations that relate functions to their
derivatives.
Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model 44322); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ. Here y' is given as (𝑆 D 𝑌), C as 𝑐, and ky as ((𝑆 × {𝐾}) ∘f · 𝑌). (𝑆 × {𝐾}) is the constant function that maps any real or complex input to k and ∘f · is multiplication as a function operation. The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf 44322 pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case 44322. Statements for this and expgrowthi 44322 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐾 ∈ ℂ) & ⊢ (𝜑 → 𝑌:𝑆⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝑌) = 𝑆) ⇒ ⊢ (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡 ∈ 𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))) | ||
| Syntax | cbcc 44325 | Extend class notation to include the generalized binomial coefficient operation. |
| class C𝑐 | ||
| Definition | df-bcc 44326* | Define a generalized binomial coefficient operation, which unlike df-bc 14268 allows complex numbers for the first argument. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))) | ||
| Theorem | bccval 44327 | Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) | ||
| Theorem | bcccl 44328 | Closure of the generalized binomial coefficient. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐𝐾) ∈ ℂ) | ||
| Theorem | bcc0 44329 | The generalized binomial coefficient 𝐶 choose 𝐾 is zero iff 𝐶 is an integer between zero and (𝐾 − 1) inclusive. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1)))) | ||
| Theorem | bccp1k 44330 | Generalized binomial coefficient: 𝐶 choose (𝐾 + 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶C𝑐𝐾) · ((𝐶 − 𝐾) / (𝐾 + 1)))) | ||
| Theorem | bccm1k 44331 | Generalized binomial coefficient: 𝐶 choose (𝐾 − 1), when 𝐶 is not (𝐾 − 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ (ℂ ∖ {(𝐾 − 1)})) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾))) | ||
| Theorem | bccn0 44332 | Generalized binomial coefficient: 𝐶 choose 0. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶C𝑐0) = 1) | ||
| Theorem | bccn1 44333 | Generalized binomial coefficient: 𝐶 choose 1. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶C𝑐1) = 𝐶) | ||
| Theorem | bccbc 44334 | The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾)) | ||
| Theorem | uzmptshftfval 44335* | When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐵) & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = (𝑦 − 𝑁) → 𝐵 = 𝐶) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ 𝐶)) | ||
| Theorem | dvradcnv2 44336* | The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is (at least) as large as the radius of convergence of 𝐺. This version of dvradcnv 26330 uses a shifted version of 𝐻 to match the sum form of (ℂ D 𝐹) in pserdv2 26340 (and shows how to use uzmptshftfval 44335 to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴‘𝑛)) · (𝑋↑(𝑛 − 1)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ ) | ||
| Theorem | binomcxplemwb 44337 | Lemma for binomcxp 44346. The lemma in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (((𝐶 − 𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (𝐶 · (𝐶C𝑐𝐾))) | ||
| Theorem | binomcxplemnn0 44338* | Lemma for binomcxp 44346. When 𝐶 is a nonnegative integer, the binomial's finite sum value by the standard binomial theorem binom 15796 equals this generalized infinite sum: the generalized binomial coefficient and exponentiation operators give exactly the same values in the standard index set (0...𝐶), and when the index set is widened beyond 𝐶 the additional values are just zeroes. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) | ||
| Theorem | binomcxplemrat 44339* | Lemma for binomcxp 44346. As 𝑘 increases, this ratio's absolute value converges to one. Part of equation "Since continuity of the absolute value..." in the Wikibooks proof (proven for the inverse ratio, which we later show is no problem). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶 − 𝑘) / (𝑘 + 1)))) ⇝ 1) | ||
| Theorem | binomcxplemfrat 44340* | Lemma for binomcxp 44346. binomcxplemrat 44339 implies that when 𝐶 is not a nonnegative integer, the absolute value of the ratio ((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)) converges to one. The rest of equation "Since continuity of the absolute value..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) ⇝ 1) | ||
| Theorem | binomcxplemradcnv 44341* | Lemma for binomcxp 44346. By binomcxplemfrat 44340 and radcnvrat 44303 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹‘𝑘) · (𝑏↑𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) | ||
| Theorem | binomcxplemdvbinom 44342* | Lemma for binomcxp 44346. By the power and chain rules, calculate the derivative of ((1 + 𝑏)↑𝑐-𝐶), with respect to 𝑏 in the disk of convergence 𝐷. We later multiply the derivative in the later binomcxplemdvsum 44344 by this derivative to show that ((1 + 𝑏)↑𝑐𝐶) (with a nonnegated 𝐶) and the later sum, since both at 𝑏 = 0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏 ∈ 𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏 ∈ 𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))) | ||
| Theorem | binomcxplemcvg 44343* | Lemma for binomcxp 44346. The sum in binomcxplemnn0 44338 and its derivative (see the next theorem, binomcxplemdvsum 44344) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) | ||
| Theorem | binomcxplemdvsum 44344* | Lemma for binomcxp 44346. The derivative of the generalized sum in binomcxplemnn0 44338. Part of remark "This convergence allows to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑃 = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘)) ⇒ ⊢ (𝜑 → (ℂ D 𝑃) = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘))) | ||
| Theorem | binomcxplemnotnn0 44345* |
Lemma for binomcxp 44346. When 𝐶 is not a nonnegative integer, the
generalized sum in binomcxplemnn0 44338 —which we will call 𝑃
—is a convergent power series: its base 𝑏 is always of
smaller absolute value than the radius of convergence.
pserdv2 26340 gives the derivative of 𝑃, which by dvradcnv 26330 also converges in that radius. When 𝐴 is fixed at one, (𝐴 + 𝑏) times that derivative equals (𝐶 · 𝑃) and fraction (𝑃 / ((𝐴 + 𝑏)↑𝑐𝐶)) is always defined with derivative zero, so the fraction is a constant—specifically one, because ((1 + 0)↑𝑐𝐶) = 1. Thus ((1 + 𝑏)↑𝑐𝐶) = (𝑃‘𝑏). Finally, let 𝑏 be (𝐵 / 𝐴), and multiply both the binomial ((1 + (𝐵 / 𝐴))↑𝑐𝐶) and the sum (𝑃‘(𝐵 / 𝐴)) by (𝐴↑𝑐𝐶) to get the result. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑃 = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) | ||
| Theorem | binomcxp 44346* | Generalize the binomial theorem binom 15796 to positive real summand 𝐴, real summand 𝐵, and complex exponent 𝐶. Proof in https://en.wikibooks.org/wiki/Advanced_Calculus 15796; see also https://en.wikipedia.org/wiki/Binomial_series 15796, https://en.wikipedia.org/wiki/Binomial_theorem 15796 (sections "Newton's generalized binomial theorem" and "Future generalizations"), and proof "General Binomial Theorem" in https://proofwiki.org/wiki/Binomial_Theorem 15796. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) | ||
| Theorem | pm10.12 44347* | Theorem *10.12 in [WhiteheadRussell] p. 146. In *10, this is treated as an axiom, and the proofs in *10 are based on this theorem. (Contributed by Andrew Salmon, 17-Jun-2011.) |
| ⊢ (∀𝑥(𝜑 ∨ 𝜓) → (𝜑 ∨ ∀𝑥𝜓)) | ||
| Theorem | pm10.14 44348 | Theorem *10.14 in [WhiteheadRussell] p. 146. (Contributed by Andrew Salmon, 17-Jun-2011.) |
| ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | ||
| Theorem | pm10.251 44349 | Theorem *10.251 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.) |
| ⊢ (∀𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) | ||
| Theorem | pm10.252 44350 | Theorem *10.252 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.) (New usage is discouraged.) |
| ⊢ (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑) | ||
| Theorem | pm10.253 44351 | Theorem *10.253 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.) |
| ⊢ (¬ ∀𝑥𝜑 ↔ ∃𝑥 ¬ 𝜑) | ||
| Theorem | albitr 44352 | Theorem *10.301 in [WhiteheadRussell] p. 151. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ ((∀𝑥(𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜓 ↔ 𝜒)) → ∀𝑥(𝜑 ↔ 𝜒)) | ||
| Theorem | pm10.42 44353 | Theorem *10.42 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 17-Jun-2011.) |
| ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ ∃𝑥(𝜑 ∨ 𝜓)) | ||
| Theorem | pm10.52 44354* | Theorem *10.52 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ 𝜓)) | ||
| Theorem | pm10.53 44355 | Theorem *10.53 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝜓)) | ||
| Theorem | pm10.541 44356* | Theorem *10.541 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥(𝜑 → (𝜒 ∨ 𝜓)) ↔ (𝜒 ∨ ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | pm10.542 44357* | Theorem *10.542 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥(𝜑 → (𝜒 → 𝜓)) ↔ (𝜒 → ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | pm10.55 44358 | Theorem *10.55 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ ((∃𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥(𝜑 → 𝜓)) ↔ (∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | pm10.56 44359 | Theorem *10.56 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥(𝜑 ∧ 𝜒)) → ∃𝑥(𝜓 ∧ 𝜒)) | ||
| Theorem | pm10.57 44360 | Theorem *10.57 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥(𝜑 → (𝜓 ∨ 𝜒)) → (∀𝑥(𝜑 → 𝜓) ∨ ∃𝑥(𝜑 ∧ 𝜒))) | ||
| Theorem | 2alanimi 44361 | Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∀𝑥∀𝑦𝜒) | ||
| Theorem | 2al2imi 44362 | Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜒)) | ||
| Theorem | pm11.11 44363 | Theorem *11.11 in [WhiteheadRussell] p. 159. (Contributed by Andrew Salmon, 17-Jun-2011.) |
| ⊢ 𝜑 ⇒ ⊢ ∀𝑧∀𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 | ||
| Theorem | pm11.12 44364* | Theorem *11.12 in [WhiteheadRussell] p. 159. (Contributed by Andrew Salmon, 17-Jun-2011.) |
| ⊢ (∀𝑥∀𝑦(𝜑 ∨ 𝜓) → (𝜑 ∨ ∀𝑥∀𝑦𝜓)) | ||
| Theorem | 19.21vv 44365* | Compare Theorem *11.3 in [WhiteheadRussell] p. 161. Special case of theorem 19.21 of [Margaris] p. 90 with two quantifiers. See 19.21v 1939. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦(𝜓 → 𝜑) ↔ (𝜓 → ∀𝑥∀𝑦𝜑)) | ||
| Theorem | 2alim 44366 | Theorem *11.32 in [WhiteheadRussell] p. 162. Theorem 19.20 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓)) | ||
| Theorem | 2albi 44367 | Theorem *11.33 in [WhiteheadRussell] p. 162. Theorem 19.15 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓)) | ||
| Theorem | 2exim 44368 | Theorem *11.34 in [WhiteheadRussell] p. 162. Theorem 19.22 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓)) | ||
| Theorem | 2exbi 44369 | Theorem *11.341 in [WhiteheadRussell] p. 162. Theorem 19.18 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓)) | ||
| Theorem | spsbce-2 44370 | Theorem *11.36 in [WhiteheadRussell] p. 162. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) | ||
| Theorem | 19.33-2 44371 | Theorem *11.421 in [WhiteheadRussell] p. 163. Theorem 19.33 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ ((∀𝑥∀𝑦𝜑 ∨ ∀𝑥∀𝑦𝜓) → ∀𝑥∀𝑦(𝜑 ∨ 𝜓)) | ||
| Theorem | 19.36vv 44372* | Theorem *11.43 in [WhiteheadRussell] p. 163. Theorem 19.36 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 25-May-2011.) |
| ⊢ (∃𝑥∃𝑦(𝜑 → 𝜓) ↔ (∀𝑥∀𝑦𝜑 → 𝜓)) | ||
| Theorem | 19.31vv 44373* | Theorem *11.44 in [WhiteheadRussell] p. 163. Theorem 19.31 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦(𝜑 ∨ 𝜓) ↔ (∀𝑥∀𝑦𝜑 ∨ 𝜓)) | ||
| Theorem | 19.37vv 44374* | Theorem *11.46 in [WhiteheadRussell] p. 164. Theorem 19.37 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∃𝑥∃𝑦(𝜓 → 𝜑) ↔ (𝜓 → ∃𝑥∃𝑦𝜑)) | ||
| Theorem | 19.28vv 44375* | Theorem *11.47 in [WhiteheadRussell] p. 164. Theorem 19.28 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∀𝑥∀𝑦𝜑)) | ||
| Theorem | pm11.52 44376 | Theorem *11.52 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ¬ ∀𝑥∀𝑦(𝜑 → ¬ 𝜓)) | ||
| Theorem | aaanv 44377* | Theorem *11.56 in [WhiteheadRussell] p. 165. Special case of aaan 2331. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ ((∀𝑥𝜑 ∧ ∀𝑦𝜓) ↔ ∀𝑥∀𝑦(𝜑 ∧ 𝜓)) | ||
| Theorem | pm11.57 44378* | Theorem *11.57 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
| Theorem | pm11.58 44379* | Theorem *11.58 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
| Theorem | pm11.59 44380* | Theorem *11.59 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
| ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓))) | ||
| Theorem | pm11.6 44381* | Theorem *11.6 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
| ⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑦(∃𝑥(𝜑 ∧ 𝜒) ∧ 𝜓)) | ||
| Theorem | pm11.61 44382* | Theorem *11.61 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) | ||
| Theorem | pm11.62 44383* | Theorem *11.62 in [WhiteheadRussell] p. 166. Importation combined with the rearrangement with quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝜒) ↔ ∀𝑥(𝜑 → ∀𝑦(𝜓 → 𝜒))) | ||
| Theorem | pm11.63 44384 | Theorem *11.63 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (¬ ∃𝑥∃𝑦𝜑 → ∀𝑥∀𝑦(𝜑 → 𝜓)) | ||
| Theorem | pm11.7 44385 | Theorem *11.7 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜑) ↔ ∃𝑥∃𝑦𝜑) | ||
| Theorem | pm11.71 44386* | Theorem *11.71 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜒) → ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑦(𝜒 → 𝜃)) ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜃)))) | ||
| Theorem | sbeqal1 44387* | If 𝑥 = 𝑦 always implies 𝑥 = 𝑧, then 𝑦 = 𝑧. (Contributed by Andrew Salmon, 2-Jun-2011.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧) → 𝑦 = 𝑧) | ||
| Theorem | sbeqal1i 44388* | Suppose you know 𝑥 = 𝑦 implies 𝑥 = 𝑧, assuming 𝑥 and 𝑧 are distinct. Then, 𝑦 = 𝑧. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑧) ⇒ ⊢ 𝑦 = 𝑧 | ||
| Theorem | sbeqal2i 44389* | If 𝑥 = 𝑦 implies 𝑥 = 𝑧, then we can infer 𝑧 = 𝑦. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑧) ⇒ ⊢ 𝑧 = 𝑦 | ||
| Theorem | axc5c4c711 44390 | Proof of a theorem that can act as a sole axiom for pure predicate calculus with ax-gen 1795 as the inference rule. This proof extends the idea of axc5c711 38911 and related theorems. (Contributed by Andrew Salmon, 14-Jul-2011.) |
| ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → (𝜑 → ∀𝑦(∀𝑦𝜑 → 𝜓))) → (∀𝑦𝜑 → ∀𝑦𝜓)) | ||
| Theorem | axc5c4c711toc5 44391 | Rederivation of sp 2184 from axc5c4c711 44390. Note that ax6 2382 is used for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) Revised to use ax6v 1968 instead of ax6 2382, so that this rederivation requires only ax6v 1968 and propositional calculus. (Revised by BJ, 14-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥𝜑 → 𝜑) | ||
| Theorem | axc5c4c711toc4 44392 | Rederivation of axc4 2320 from axc5c4c711 44390. Note that only propositional calculus is required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | ||
| Theorem | axc5c4c711toc7 44393 | Rederivation of axc7 2316 from axc5c4c711 44390. Note that neither axc7 2316 nor ax-11 2158 are required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | ||
| Theorem | axc5c4c711to11 44394 | Rederivation of ax-11 2158 from axc5c4c711 44390. Note that ax-11 2158 is not required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
| Theorem | axc11next 44395* | This theorem shows that, given axextb 2704, we can derive a version of axc11n 2424. However, it is weaker than axc11n 2424 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧 𝑧 = 𝑥) | ||
| Theorem | pm13.13a 44396 | One result of theorem *13.13 in [WhiteheadRussell] p. 178. A note on the section - to make the theorems more usable, and because inequality is notation for set theory (it is not defined in the predicate calculus section), this section will use classes instead of sets. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑) | ||
| Theorem | pm13.13b 44397 | Theorem *13.13 in [WhiteheadRussell] p. 178 with different variable substitution. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ (([𝐴 / 𝑥]𝜑 ∧ 𝑥 = 𝐴) → 𝜑) | ||
| Theorem | pm13.14 44398 | Theorem *13.14 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ (([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥 ≠ 𝐴) | ||
| Theorem | pm13.192 44399* | Theorem *13.192 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.) |
| ⊢ (∃𝑦(∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) | ||
| Theorem | pm13.193 44400 | Theorem *13.193 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 ∧ 𝑥 = 𝑦)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |