![]() |
Metamath
Proof Explorer Theorem List (p. 444 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29568) |
![]() (29569-31091) |
![]() (31092-46925) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sge00 44301 | The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (Σ^‘∅) = 0 | ||
Theorem | fsumlesge0 44302* | Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) | ||
Theorem | sge0revalmpt 44303* | Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) | ||
Theorem | sge0sn 44304 | A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:{𝐴}⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = (𝐹‘𝐴)) | ||
Theorem | sge0tsms 44305 | Σ^ applied to a nonnegative function (its meaningful domain) is the same as the infinite group sum (that's always convergent, in this case). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) ∈ (𝐺 tsums 𝐹)) | ||
Theorem | sge0cl 44306 | The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) ∈ (0[,]+∞)) | ||
Theorem | sge0f1o 44307* | Re-index a nonnegative extended sum using a bijection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = (Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) | ||
Theorem | sge0snmpt 44308* | A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴} ↦ 𝐵)) = 𝐶) | ||
Theorem | sge0ge0 44309 | The sum of nonnegative extended reals is nonnegative. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → 0 ≤ (Σ^‘𝐹)) | ||
Theorem | sge0xrcl 44310 | The arbitrary sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ*) | ||
Theorem | sge0repnf 44311 | The of nonnegative extended reals is a real number if and only if it is not +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → ((Σ^‘𝐹) ∈ ℝ ↔ ¬ (Σ^‘𝐹) = +∞)) | ||
Theorem | sge0fsum 44312* | The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = Σ𝑥 ∈ 𝑋 (𝐹‘𝑥)) | ||
Theorem | sge0rern 44313 | If the sum of nonnegative extended reals is not +∞ then no terms is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) | ||
Theorem | sge0supre 44314* | If the arbitrary sum of nonnegative extended reals is real, then it is the supremum (in the real numbers) of finite subsums. Similar to sge0sup 44316, but here we can use sup with respect to ℝ instead of ℝ*. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ, < )) | ||
Theorem | sge0fsummpt 44315* | The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | sge0sup 44316* | The arbitrary sum of nonnegative extended reals is the supremum of finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑥))), ℝ*, < )) | ||
Theorem | sge0less 44317 | A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝐹 ↾ 𝑌)) ≤ (Σ^‘𝐹)) | ||
Theorem | sge0rnbnd 44318* | The range used in the definition of Σ^ is bounded, when the whole sum is a real number. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) | ||
Theorem | sge0pr 44319* | Sum of a pair of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) | ||
Theorem | sge0gerp 44320* | The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) ⇒ ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) | ||
Theorem | sge0pnffigt 44321* | If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) = +∞) & ⊢ (𝜑 → 𝑌 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹 ↾ 𝑥))) | ||
Theorem | sge0ssre 44322 | If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘(𝐹 ↾ 𝑌)) ∈ ℝ) | ||
Theorem | sge0lefi 44323* | A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((Σ^‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑥)) ≤ 𝐴)) | ||
Theorem | sge0lessmpt 44324* | A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐶 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵))) | ||
Theorem | sge0ltfirp 44325* | If the sum of nonnegative extended reals is real, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘𝐹) < ((Σ^‘(𝐹 ↾ 𝑥)) + 𝑌)) | ||
Theorem | sge0prle 44326* | The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr 44319. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) | ||
Theorem | sge0gerpmpt 44327* | The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦)) ⇒ ⊢ (𝜑 → 𝐶 ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵))) | ||
Theorem | sge0resrnlem 44328 | The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝐴) & ⊢ (𝜑 → (𝐺 ↾ 𝑋):𝑋–1-1-onto→ran 𝐺) ⇒ ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) | ||
Theorem | sge0resrn 44329 | The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions (well-order hypothesis allows to avoid using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐴) ⇒ ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) | ||
Theorem | sge0ssrempt 44330* | If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐶 ↦ 𝐵)) ∈ ℝ) | ||
Theorem | sge0resplit 44331 | Σ^ splits into two parts, when it's a real number. This is a special case of sge0split 44334. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑈 = (𝐴 ∪ 𝐵) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝐹:𝑈⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = ((Σ^‘(𝐹 ↾ 𝐴)) + (Σ^‘(𝐹 ↾ 𝐵)))) | ||
Theorem | sge0le 44332* | If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:𝑋⟶(0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) ≤ (Σ^‘𝐺)) | ||
Theorem | sge0ltfirpmpt 44333* | If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) | ||
Theorem | sge0split 44334 | Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑈 = (𝐴 ∪ 𝐵) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝐹:𝑈⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = ((Σ^‘(𝐹 ↾ 𝐴)) +𝑒 (Σ^‘(𝐹 ↾ 𝐵)))) | ||
Theorem | sge0lempt 44335* | If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) | ||
Theorem | sge0splitmpt 44336* | Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) | ||
Theorem | sge0ss 44337* | Change the index set to a subset in a sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))) | ||
Theorem | sge0iunmptlemfi 44338* | Sum of nonnegative extended reals over a disjoint indexed union (in this lemma, for a finite index set). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶)) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))))) | ||
Theorem | sge0p1 44339* | The addition of the next term in a finite sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵)) | ||
Theorem | sge0iunmptlemre 44340* | Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)) ∈ ℝ) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶)) ∈ ℝ*) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)))) ∈ ℝ*) & ⊢ (𝜑 → (𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶):∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞)) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶)) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))))) | ||
Theorem | sge0fodjrnlem 44341* | Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐶–onto→𝐴) & ⊢ (𝜑 → Disj 𝑛 ∈ 𝐶 (𝐹‘𝑛)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝐵 = 0) & ⊢ 𝑍 = (◡𝐹 “ {∅}) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = (Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) | ||
Theorem | sge0fodjrn 44342* | Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐶–onto→𝐴) & ⊢ (𝜑 → Disj 𝑛 ∈ 𝐶 (𝐹‘𝑛)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝐵 = 0) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = (Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) | ||
Theorem | sge0iunmpt 44343* | Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶)) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))))) | ||
Theorem | sge0iun 44344* | Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))))) | ||
Theorem | sge0nemnf 44345 | The generalized sum of nonnegative extended reals is not minus infinity. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) ≠ -∞) | ||
Theorem | sge0rpcpnf 44346* | The sum of an infinite number of a positive constant, is +∞ (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = +∞) | ||
Theorem | sge0rernmpt 44347* | If the sum of nonnegative extended reals is not +∞ then no term is +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | ||
Theorem | sge0lefimpt 44348* | A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) ≤ 𝐶)) | ||
Theorem | nn0ssge0 44349 | Nonnegative integers are nonnegative reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ℕ0 ⊆ (0[,)+∞) | ||
Theorem | sge0clmpt 44350* | The generalized sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ (0[,]+∞)) | ||
Theorem | sge0ltfirpmpt2 44351* | If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < (Σ𝑥 ∈ 𝑦 𝐵 + 𝑌)) | ||
Theorem | sge0isum 44352 | If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶(0[,)+∞)) & ⊢ 𝐺 = seq𝑀( + , 𝐹) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = 𝐵) | ||
Theorem | sge0xrclmpt 44353* | The generalized sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ*) | ||
Theorem | sge0xp 44354* | Combine two generalized sums of nonnegative extended reals into a single generalized sum over the cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑗 ∈ 𝐴 ↦ (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷))) | ||
Theorem | sge0isummpt 44355* | If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = 𝐵) | ||
Theorem | sge0ad2en 44356* | The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴) | ||
Theorem | sge0isummpt2 44357* | If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = Σ𝑘 ∈ 𝑍 𝐴) | ||
Theorem | sge0xaddlem1 44358* | The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ⊆ 𝐴) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ (𝜑 → 𝑊 ⊆ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) < (Σ𝑘 ∈ 𝑈 𝐵 + (𝐸 / 2))) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) < (Σ𝑘 ∈ 𝑊 𝐶 + (𝐸 / 2))) & ⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ) ⇒ ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) + (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸)) | ||
Theorem | sge0xaddlem2 44359* | The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) +𝑒 (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)))) | ||
Theorem | sge0xadd 44360* | The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) +𝑒 (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)))) | ||
Theorem | sge0fsummptf 44361* | The generalized sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | sge0snmptf 44362* | A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴} ↦ 𝐵)) = 𝐶) | ||
Theorem | sge0ge0mpt 44363* | The sum of nonnegative extended reals is nonnegative. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → 0 ≤ (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵))) | ||
Theorem | sge0repnfmpt 44364* | The of nonnegative extended reals is a real number if and only if it is not +∞. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞)) | ||
Theorem | sge0pnffigtmpt 44365* | If the generalized sum of nonnegative reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) & ⊢ (𝜑 → 𝑌 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) | ||
Theorem | sge0splitsn 44366* | Separate out a term in a generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ {𝐵}) ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 𝐷)) | ||
Theorem | sge0pnffsumgt 44367* | If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) & ⊢ (𝜑 → 𝑌 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < Σ𝑘 ∈ 𝑥 𝐵) | ||
Theorem | sge0gtfsumgt 44368* | If the generalized sum of nonnegative reals is larger than a given number, then that number can be dominated by a finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘 ∈ 𝑦 𝐵) | ||
Theorem | sge0uzfsumgt 44369* | If a real number is smaller than a generalized sum of nonnegative reals, then it is smaller than some finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝐾) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ 𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵) | ||
Theorem | sge0pnfmpt 44370* | If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) | ||
Theorem | sge0seq 44371 | A series of nonnegative reals agrees with the generalized sum of nonnegative reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶(0[,)+∞)) & ⊢ 𝐺 = seq𝑀( + , 𝐹) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran 𝐺, ℝ*, < )) | ||
Theorem | sge0reuz 44372* | Value of the generalized sum of nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < )) | ||
Theorem | sge0reuzb 44373* | Value of the generalized sum of uniformly bounded nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < )) | ||
Proofs for most of the theorems in section 112 of [Fremlin1] | ||
Syntax | cmea 44374 | Extend class notation with the class of measures. |
class Meas | ||
Definition | df-mea 44375* | Define the class of measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Meas = {𝑥 ∣ (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑥‘∪ 𝑦) = (Σ^‘(𝑥 ↾ 𝑦))))} | ||
Theorem | ismea 44376* | Express the predicate "𝑀 is a measure." Definition 112A of [Fremlin1] p. 14. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | ||
Theorem | dmmeasal 44377 | The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
Theorem | meaf 44378 | A measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 ⇒ ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) | ||
Theorem | mea0 44379 | The measure of the empty set is always 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) ⇒ ⊢ (𝜑 → (𝑀‘∅) = 0) | ||
Theorem | nnfoctbdjlem 44380* | There exists a mapping from ℕ onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝐺:𝐴–1-1-onto→𝑋) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑋 𝑦) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))) | ||
Theorem | nnfoctbdj 44381* | There exists a mapping from ℕ onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ≼ ω) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑋 𝑦) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))) | ||
Theorem | meadjuni 44382* | The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝑋 ≼ ω) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝑥) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))) | ||
Theorem | meacl 44383 | The measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) | ||
Theorem | iundjiunlem 44384* | The sets in the sequence 𝐹 are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) & ⊢ (𝜑 → 𝐽 ∈ 𝑍) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → 𝐽 < 𝐾) ⇒ ⊢ (𝜑 → ((𝐹‘𝐽) ∩ (𝐹‘𝐾)) = ∅) | ||
Theorem | iundjiun 44385* | Given a sequence 𝐸 of sets, a sequence 𝐹 of disjoint sets is built, such that the indexed union stays the same. As in the proof of Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑛𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑉) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → ((∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) ∧ ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∧ Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛))) | ||
Theorem | meaxrcl 44386 | The measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) | ||
Theorem | meadjun 44387 | The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | ||
Theorem | meassle 44388 | The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) | ||
Theorem | meaunle 44389 | The measure of the union of two sets is less than or equal to the sum of the measures, Property 112C (c) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | ||
Theorem | meadjiunlem 44390* | The sum of nonnegative extended reals, restricted to the range of another function. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐺:𝑋⟶𝑆) & ⊢ 𝑌 = {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} & ⊢ (𝜑 → Disj 𝑖 ∈ 𝑋 (𝐺‘𝑖)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑀 ∘ 𝐺))) | ||
Theorem | meadjiun 44391* | The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑘 ∈ 𝐴 𝐵) = (Σ^‘(𝑘 ∈ 𝐴 ↦ (𝑀‘𝐵)))) | ||
Theorem | ismeannd 44392* | Sufficient condition to prove that 𝑀 is a measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆 ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → (𝑀‘∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒‘𝑛))))) ⇒ ⊢ (𝜑 → 𝑀 ∈ Meas) | ||
Theorem | meaiunlelem 44393* | The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) | ||
Theorem | meaiunle 44394* | The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) | ||
Theorem | psmeasurelem 44395* | 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) & ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) & ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) | ||
Theorem | psmeasure 44396* | Point supported measure, Remark 112B (d) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) & ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) ⇒ ⊢ (𝜑 → 𝑀 ∈ Meas) | ||
Theorem | voliunsge0lem 44397* | The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))) & ⊢ (𝜑 → 𝐸:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) | ||
Theorem | voliunsge0 44398* | The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐸:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) | ||
Theorem | volmea 44399 | The Lebeasgue measure on the Reals is actually a measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → vol ∈ Meas) | ||
Theorem | meage0 44400 | If the measure of a measurable set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) ⇒ ⊢ (𝜑 → 0 ≤ (𝑀‘𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |