| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uun111 | Structured version Visualization version GIF version | ||
| Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| uun111.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| uun111 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 1094 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) ↔ (𝜑 ∧ (𝜑 ∧ 𝜑))) | |
| 2 | anabs5 663 | . . 3 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜑)) ↔ (𝜑 ∧ 𝜑)) | |
| 3 | anidm 564 | . . 3 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
| 4 | 1, 2, 3 | 3bitri 297 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) ↔ 𝜑) |
| 5 | uun111.1 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜑) → 𝜓) | |
| 6 | 4, 5 | sylbir 235 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |