MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm13 Structured version   Visualization version   GIF version

Theorem 3anidm13 1422
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm13 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3 ((𝜑𝜓𝜑) → 𝜒)
213com23 1126 . 2 ((𝜑𝜑𝜓) → 𝜒)
323anidm12 1421 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  npncan2  11449  ltsubpos  11670  leaddle0  11693  subge02  11694  halfaddsub  12415  avglt1  12420  hashssdif  14377  pythagtriplem4  16790  pythagtriplem14  16799  lsmss2  19597  grpoidinvlem2  30434  hvpncan3  30971  bcm1n  32718  revpfxsfxrev  35103  nnproddivdvdsd  41988  resubidaddlid  42383  reposdif  42443  3anidm12p1  44795  3impcombi  44806
  Copyright terms: Public domain W3C validator