![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anidm13 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm13.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) |
Ref | Expression |
---|---|
3anidm13 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm13.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) | |
2 | 1 | 3com23 1124 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
3 | 2 | 3anidm12 1417 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: npncan2 11491 ltsubpos 11710 leaddle0 11733 subge02 11734 halfaddsub 12449 avglt1 12454 hashssdif 14376 pythagtriplem4 16756 pythagtriplem14 16765 lsmss2 19576 grpoidinvlem2 30025 hvpncan3 30562 bcm1n 32273 revpfxsfxrev 34404 nnproddivdvdsd 41172 resubidaddlid 41570 reposdif 41618 3anidm12p1 43869 3impcombi 43880 |
Copyright terms: Public domain | W3C validator |