| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm13 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm13.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm13 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm13.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) | |
| 2 | 1 | 3com23 1126 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
| 3 | 2 | 3anidm12 1421 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: npncan2 11425 ltsubpos 11646 leaddle0 11669 subge02 11670 halfaddsub 12391 avglt1 12396 hashssdif 14353 pythagtriplem4 16766 pythagtriplem14 16775 lsmss2 19581 grpoidinvlem2 30484 hvpncan3 31021 bcm1n 32768 revpfxsfxrev 35096 nnproddivdvdsd 41981 resubidaddlid 42376 reposdif 42436 3anidm12p1 44788 3impcombi 44799 |
| Copyright terms: Public domain | W3C validator |