| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm13 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm13.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm13 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm13.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) | |
| 2 | 1 | 3com23 1126 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
| 3 | 2 | 3anidm12 1421 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: npncan2 11388 ltsubpos 11609 leaddle0 11632 subge02 11633 halfaddsub 12354 avglt1 12359 hashssdif 14319 pythagtriplem4 16731 pythagtriplem14 16740 lsmss2 19579 grpoidinvlem2 30485 hvpncan3 31022 bcm1n 32777 revpfxsfxrev 35160 nnproddivdvdsd 42092 resubidaddlid 42487 reposdif 42547 3anidm12p1 44897 3impcombi 44908 |
| Copyright terms: Public domain | W3C validator |