| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm13 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm13.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm13 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm13.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) | |
| 2 | 1 | 3com23 1126 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
| 3 | 2 | 3anidm12 1421 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: npncan2 11449 ltsubpos 11670 leaddle0 11693 subge02 11694 halfaddsub 12415 avglt1 12420 hashssdif 14377 pythagtriplem4 16790 pythagtriplem14 16799 lsmss2 19597 grpoidinvlem2 30434 hvpncan3 30971 bcm1n 32718 revpfxsfxrev 35103 nnproddivdvdsd 41988 resubidaddlid 42383 reposdif 42443 3anidm12p1 44795 3impcombi 44806 |
| Copyright terms: Public domain | W3C validator |