![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anidm13 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm13.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) |
Ref | Expression |
---|---|
3anidm13 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm13.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) | |
2 | 1 | 3com23 1125 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
3 | 2 | 3anidm12 1418 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 |
This theorem is referenced by: npncan2 11492 ltsubpos 11711 leaddle0 11734 subge02 11735 halfaddsub 12450 avglt1 12455 hashssdif 14377 pythagtriplem4 16757 pythagtriplem14 16766 lsmss2 19577 grpoidinvlem2 30026 hvpncan3 30563 bcm1n 32274 revpfxsfxrev 34405 nnproddivdvdsd 41173 resubidaddlid 41571 reposdif 41619 3anidm12p1 43870 3impcombi 43881 |
Copyright terms: Public domain | W3C validator |