Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anidm13 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm13.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) |
Ref | Expression |
---|---|
3anidm13 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm13.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) | |
2 | 1 | 3com23 1125 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
3 | 2 | 3anidm12 1418 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: npncan2 11248 ltsubpos 11467 leaddle0 11490 subge02 11491 halfaddsub 12206 avglt1 12211 hashssdif 14127 pythagtriplem4 16520 pythagtriplem14 16529 lsmss2 19273 grpoidinvlem2 28867 hvpncan3 29404 bcm1n 31116 revpfxsfxrev 33077 nnproddivdvdsd 40009 resubidaddid1 40378 reposdif 40424 3anidm12p1 42426 3impcombi 42437 |
Copyright terms: Public domain | W3C validator |