MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm13 Structured version   Visualization version   GIF version

Theorem 3anidm13 1418
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm13 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3 ((𝜑𝜓𝜑) → 𝜒)
213com23 1124 . 2 ((𝜑𝜑𝜓) → 𝜒)
323anidm12 1417 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087
This theorem is referenced by:  npncan2  11491  ltsubpos  11710  leaddle0  11733  subge02  11734  halfaddsub  12449  avglt1  12454  hashssdif  14376  pythagtriplem4  16756  pythagtriplem14  16765  lsmss2  19576  grpoidinvlem2  30025  hvpncan3  30562  bcm1n  32273  revpfxsfxrev  34404  nnproddivdvdsd  41172  resubidaddlid  41570  reposdif  41618  3anidm12p1  43869  3impcombi  43880
  Copyright terms: Public domain W3C validator