| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm13 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm13.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm13 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm13.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) | |
| 2 | 1 | 3com23 1126 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
| 3 | 2 | 3anidm12 1421 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: npncan2 11515 ltsubpos 11734 leaddle0 11757 subge02 11758 halfaddsub 12479 avglt1 12484 hashssdif 14435 pythagtriplem4 16844 pythagtriplem14 16853 lsmss2 19653 grpoidinvlem2 30491 hvpncan3 31028 bcm1n 32777 revpfxsfxrev 35143 nnproddivdvdsd 42018 resubidaddlid 42413 reposdif 42461 3anidm12p1 44805 3impcombi 44816 |
| Copyright terms: Public domain | W3C validator |