![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anidm13 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm13.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) |
Ref | Expression |
---|---|
3anidm13 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm13.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) | |
2 | 1 | 3com23 1125 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
3 | 2 | 3anidm12 1418 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: npncan2 11534 ltsubpos 11753 leaddle0 11776 subge02 11777 halfaddsub 12497 avglt1 12502 hashssdif 14448 pythagtriplem4 16853 pythagtriplem14 16862 lsmss2 19700 grpoidinvlem2 30534 hvpncan3 31071 bcm1n 32803 revpfxsfxrev 35100 nnproddivdvdsd 41982 resubidaddlid 42402 reposdif 42450 3anidm12p1 44804 3impcombi 44815 |
Copyright terms: Public domain | W3C validator |