MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm13 Structured version   Visualization version   GIF version

Theorem 3anidm13 1422
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm13 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3 ((𝜑𝜓𝜑) → 𝜒)
213com23 1126 . 2 ((𝜑𝜑𝜓) → 𝜒)
323anidm12 1421 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  npncan2  11425  ltsubpos  11646  leaddle0  11669  subge02  11670  halfaddsub  12391  avglt1  12396  hashssdif  14353  pythagtriplem4  16766  pythagtriplem14  16775  lsmss2  19581  grpoidinvlem2  30484  hvpncan3  31021  bcm1n  32768  revpfxsfxrev  35096  nnproddivdvdsd  41981  resubidaddlid  42376  reposdif  42436  3anidm12p1  44788  3impcombi  44799
  Copyright terms: Public domain W3C validator