MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm13 Structured version   Visualization version   GIF version

Theorem 3anidm13 1419
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm13 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3 ((𝜑𝜓𝜑) → 𝜒)
213com23 1125 . 2 ((𝜑𝜑𝜓) → 𝜒)
323anidm12 1418 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  npncan2  11534  ltsubpos  11753  leaddle0  11776  subge02  11777  halfaddsub  12497  avglt1  12502  hashssdif  14448  pythagtriplem4  16853  pythagtriplem14  16862  lsmss2  19700  grpoidinvlem2  30534  hvpncan3  31071  bcm1n  32803  revpfxsfxrev  35100  nnproddivdvdsd  41982  resubidaddlid  42402  reposdif  42450  3anidm12p1  44804  3impcombi  44815
  Copyright terms: Public domain W3C validator