MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm13 Structured version   Visualization version   GIF version

Theorem 3anidm13 1422
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm13 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3 ((𝜑𝜓𝜑) → 𝜒)
213com23 1126 . 2 ((𝜑𝜑𝜓) → 𝜒)
323anidm12 1421 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  npncan2  11515  ltsubpos  11734  leaddle0  11757  subge02  11758  halfaddsub  12479  avglt1  12484  hashssdif  14435  pythagtriplem4  16844  pythagtriplem14  16853  lsmss2  19653  grpoidinvlem2  30491  hvpncan3  31028  bcm1n  32777  revpfxsfxrev  35143  nnproddivdvdsd  42018  resubidaddlid  42413  reposdif  42461  3anidm12p1  44805  3impcombi  44816
  Copyright terms: Public domain W3C validator