MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm13 Structured version   Visualization version   GIF version

Theorem 3anidm13 1420
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm13 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3 ((𝜑𝜓𝜑) → 𝜒)
213com23 1126 . 2 ((𝜑𝜑𝜓) → 𝜒)
323anidm12 1419 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  npncan2  11563  ltsubpos  11782  leaddle0  11805  subge02  11806  halfaddsub  12526  avglt1  12531  hashssdif  14461  pythagtriplem4  16866  pythagtriplem14  16875  lsmss2  19709  grpoidinvlem2  30537  hvpncan3  31074  bcm1n  32800  revpfxsfxrev  35083  nnproddivdvdsd  41957  resubidaddlid  42371  reposdif  42419  3anidm12p1  44777  3impcombi  44788
  Copyright terms: Public domain W3C validator