MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm13 Structured version   Visualization version   GIF version

Theorem 3anidm13 1419
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm13 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3 ((𝜑𝜓𝜑) → 𝜒)
213com23 1125 . 2 ((𝜑𝜑𝜓) → 𝜒)
323anidm12 1418 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  npncan2  11248  ltsubpos  11467  leaddle0  11490  subge02  11491  halfaddsub  12206  avglt1  12211  hashssdif  14127  pythagtriplem4  16520  pythagtriplem14  16529  lsmss2  19273  grpoidinvlem2  28867  hvpncan3  29404  bcm1n  31116  revpfxsfxrev  33077  nnproddivdvdsd  40009  resubidaddid1  40378  reposdif  40424  3anidm12p1  42426  3impcombi  42437
  Copyright terms: Public domain W3C validator