MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm13 Structured version   Visualization version   GIF version

Theorem 3anidm13 1422
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm13 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3 ((𝜑𝜓𝜑) → 𝜒)
213com23 1126 . 2 ((𝜑𝜑𝜓) → 𝜒)
323anidm12 1421 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  npncan2  11388  ltsubpos  11609  leaddle0  11632  subge02  11633  halfaddsub  12354  avglt1  12359  hashssdif  14319  pythagtriplem4  16731  pythagtriplem14  16740  lsmss2  19579  grpoidinvlem2  30485  hvpncan3  31022  bcm1n  32777  revpfxsfxrev  35160  nnproddivdvdsd  42092  resubidaddlid  42487  reposdif  42547  3anidm12p1  44897  3impcombi  44908
  Copyright terms: Public domain W3C validator