MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anidm13 Structured version   Visualization version   GIF version

Theorem 3anidm13 1418
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm13.1 ((𝜑𝜓𝜑) → 𝜒)
Assertion
Ref Expression
3anidm13 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm13
StepHypRef Expression
1 3anidm13.1 . . 3 ((𝜑𝜓𝜑) → 𝜒)
213com23 1124 . 2 ((𝜑𝜑𝜓) → 𝜒)
323anidm12 1417 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  npncan2  11178  ltsubpos  11397  leaddle0  11420  subge02  11421  halfaddsub  12136  avglt1  12141  hashssdif  14055  pythagtriplem4  16448  pythagtriplem14  16457  lsmss2  19188  grpoidinvlem2  28768  hvpncan3  29305  bcm1n  31018  revpfxsfxrev  32977  nnproddivdvdsd  39937  resubidaddid1  40299  reposdif  40345  3anidm12p1  42315  3impcombi  42326
  Copyright terms: Public domain W3C validator