MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4ralbidv Structured version   Visualization version   GIF version

Theorem 4ralbidv 3223
Description: Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 20-Feb-2025.)
Hypothesis
Ref Expression
4ralbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
4ralbidv (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜓 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧   𝜑,𝑤
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤)   𝜒(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4ralbidv
StepHypRef Expression
1 4ralbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21ralbidv 3178 . 2 (𝜑 → (∀𝑤𝐷 𝜓 ↔ ∀𝑤𝐷 𝜒))
323ralbidv 3222 1 (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜓 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 398  df-ral 3063
This theorem is referenced by:  6ralbidv  3224  cbvral8vw  3244  rspc8v  3633
  Copyright terms: Public domain W3C validator