![]() |
Metamath
Proof Explorer Theorem List (p. 33 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | r2al 3201* | Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
Theorem | r2ex 3202* | Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) | ||
Theorem | r3al 3203* | Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑)) | ||
Theorem | r3ex 3204* | Triple existential quantification. (Contributed by AV, 21-Jul-2025.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑥∃𝑦∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ 𝜑)) | ||
Theorem | rgen2 3205* | Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3379 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | ralrimivv 3206* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | ||
Theorem | rexlimivv 3207* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) | ||
Theorem | ralrimivva 3208* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | ||
Theorem | ralrimdvv 3209* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.) |
⊢ (𝜑 → (𝜓 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | rgen3 3210* | Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 | ||
Theorem | ralrimivvva 3211* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) | ||
Theorem | ralimdvva 3212* | Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1808). (Contributed by AV, 27-Nov-2019.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | reximdvva 3213* | Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by AV, 5-Jan-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | ralimdvv 3214* | Deduction doubly quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | ralimd4v 3215* | Deduction quadrupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜒)) | ||
Theorem | ralimd6v 3216* | Deduction sextupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 5-Mar-2025.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜒)) | ||
Theorem | ralrimdvva 3217* | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | rexlimdvv 3218* | Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | ||
Theorem | rexlimdvva 3219* | Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | ||
Theorem | rexlimdvvva 3220* | Inference from Theorem 19.23 of [Margaris] p. 90, for three restricted quantifiers. (Contributed by AV, 23-Aug-2025.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓 → 𝜒)) | ||
Theorem | reximddv2 3221* | Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) | ||
Theorem | r19.29vva 3222* | A commonly used pattern based on r19.29 3120, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | r19.29vvaOLD 3223* | Obsolete version of r19.29vva 3222 as of 4-Nov-2024. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | 2rexbiia 3224* | Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | ||
Theorem | 2ralbidva 3225* | Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | 2rexbidva 3226* | Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | 2ralbidv 3227* | Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | 2rexbidv 3228* | Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | rexralbidv 3229* | Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | 3ralbidv 3230* | Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 20-Feb-2025.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒)) | ||
Theorem | 4ralbidv 3231* | Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 20-Feb-2025.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜒)) | ||
Theorem | 6ralbidv 3232* | Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 5-Mar-2025.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑡 ∈ 𝐸 ∀𝑢 ∈ 𝐹 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑡 ∈ 𝐸 ∀𝑢 ∈ 𝐹 𝜒)) | ||
Theorem | r19.41vv 3233* | Version of r19.41v 3195 with two quantifiers. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) | ||
Theorem | reeanlem 3234* | Lemma factoring out common proof steps of reeanv 3235 and reean 3322. (Contributed by Wolf Lammen, 20-Aug-2023.) |
⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | reeanv 3235* | Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | 3reeanv 3236* | Rearrange three restricted existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑧 ∈ 𝐶 𝜒)) | ||
Theorem | 2ralor 3237* | Distribute restricted universal quantification over "or". (Contributed by Jeff Madsen, 19-Jun-2010.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 20-Nov-2024.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∨ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∨ ∀𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | 2ralorOLD 3238* | Obsolete version of 2ralor 3237 as of 20-Nov-2024. (Contributed by Jeff Madsen, 19-Jun-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∨ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∨ ∀𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | risset 3239* | Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | ||
Theorem | nelb 3240* | A definition of ¬ 𝐴 ∈ 𝐵. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof shortened by Wolf Lammen, 3-Nov-2024.) |
⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
Theorem | nelbOLD 3241* | Obsolete version of nelb 3240 as of 3-Nov-2024. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
Theorem | rspw 3242* | Restricted specialization. Weak version of rsp 3253, requiring ax-8 2110, but not ax-12 2178. (Contributed by GG, 3-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | cbvralvw 3243* | Change the bound variable of a restricted universal quantifier using implicit substitution. Version of cbvralv 3372 with a disjoint variable condition, which does not require ax-10 2141, ax-11 2158, ax-12 2178, ax-13 2380. (Contributed by NM, 28-Jan-1997.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrexvw 3244* | Change the bound variable of a restricted existential quantifier using implicit substitution. Version of cbvrexv 3373 with a disjoint variable condition, which does not require ax-10 2141, ax-11 2158, ax-12 2178, ax-13 2380. (Contributed by NM, 2-Jun-1998.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvraldva 3245* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) Avoid ax-9 2118, ax-ext 2711. (Revised by Wolf Lammen, 9-Mar-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐴 𝜒)) | ||
Theorem | cbvrexdva 3246* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) Avoid ax-9 2118, ax-ext 2711. (Revised by Wolf Lammen, 9-Mar-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜒)) | ||
Theorem | cbvral2vw 3247* | Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 3376 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 10-Aug-2004.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | ||
Theorem | cbvrex2vw 3248* | Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 3377 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by FL, 2-Jul-2012.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) | ||
Theorem | cbvral3vw 3249* | Change bound variables of triple restricted universal quantification, using implicit substitution. Version of cbvral3v 3378 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 10-May-2005.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) | ||
Theorem | cbvral4vw 3250* | Change bound variables of quadruple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 2-Mar-2025.) |
⊢ (𝑥 = 𝑎 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑏 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝑐 → (𝜃 ↔ 𝜏)) & ⊢ (𝑤 = 𝑑 → (𝜏 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 𝜓) | ||
Theorem | cbvral6vw 3251* | Change bound variables of sextuple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 5-Mar-2025.) |
⊢ (𝑥 = 𝑎 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑏 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝑐 → (𝜃 ↔ 𝜏)) & ⊢ (𝑤 = 𝑑 → (𝜏 ↔ 𝜂)) & ⊢ (𝑝 = 𝑒 → (𝜂 ↔ 𝜁)) & ⊢ (𝑞 = 𝑓 → (𝜁 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 ∀𝑒 ∈ 𝐸 ∀𝑓 ∈ 𝐹 𝜓) | ||
Theorem | cbvral8vw 3252* | Change bound variables of octuple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 2-Mar-2025.) |
⊢ (𝑥 = 𝑎 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑏 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝑐 → (𝜃 ↔ 𝜏)) & ⊢ (𝑤 = 𝑑 → (𝜏 ↔ 𝜂)) & ⊢ (𝑝 = 𝑒 → (𝜂 ↔ 𝜁)) & ⊢ (𝑞 = 𝑓 → (𝜁 ↔ 𝜎)) & ⊢ (𝑟 = 𝑔 → (𝜎 ↔ 𝜌)) & ⊢ (𝑠 = ℎ → (𝜌 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 ∀𝑟 ∈ 𝐺 ∀𝑠 ∈ 𝐻 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 ∀𝑒 ∈ 𝐸 ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐺 ∀ℎ ∈ 𝐻 𝜓) | ||
Theorem | rsp 3253 | Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | rspa 3254 | Restricted specialization. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜑) | ||
Theorem | rspe 3255 | Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rspec 3256 | Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
⊢ ∀𝑥 ∈ 𝐴 𝜑 ⇒ ⊢ (𝑥 ∈ 𝐴 → 𝜑) | ||
Theorem | r19.21bi 3257 | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 11-Jun-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | ||
Theorem | r19.21be 3258 | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) | ||
Theorem | r19.21t 3259 | Restricted quantifier version of 19.21t 2207; closed form of r19.21 3260. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Wolf Lammen, 2-Jan-2020.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓))) | ||
Theorem | r19.21 3260 | Restricted quantifier version of 19.21 2208. (Contributed by Scott Fenton, 30-Mar-2011.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.23t 3261 | Closed theorem form of r19.23 3262. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
⊢ (Ⅎ𝑥𝜓 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓))) | ||
Theorem | r19.23 3262 | Restricted quantifier version of 19.23 2212. See r19.23v 3189 for a version requiring fewer axioms. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) | ||
Theorem | ralrimi 3263 | Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). For a version based on fewer axioms see ralrimiv 3151. (Contributed by NM, 10-Oct-1999.) Shortened after introduction of hbralrimi 3150. (Revised by Wolf Lammen, 4-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralrimia 3264 | Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rexlimi 3265 | Restricted quantifier version of exlimi 2218. For a version based on fewer axioms see rexlimiv 3154. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) | ||
Theorem | ralimdaa 3266 | Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) (Proof shortened by Wolf Lammen, 29-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | reximdai 3267 | Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | r19.37 3268 | Restricted quantifier version of one direction of 19.37 2233. (The other direction does not hold when 𝐴 is empty.) (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.41 3269 | Restricted quantifier version of 19.41 2236. See r19.41v 3195 for a version with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 1-Nov-2010.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) | ||
Theorem | ralrimd 3270 | Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) For a version based on fewer axioms see ralrimdv 3158. (Contributed by NM, 16-Feb-2004.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexlimd2 3271 | Version of rexlimd 3272 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimd 3272 | Deduction form of rexlimd 3272. For a version based on fewer axioms see rexlimdv 3159. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 14-Jan-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | r19.29af2 3273 | A commonly used pattern based on r19.29 3120. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | r19.29af 3274* | A commonly used pattern based on r19.29 3120. See r19.29a 3168, r19.29an 3164 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | reximd2a 3275 | Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝑥 ∈ 𝐵) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜒) | ||
Theorem | ralbida 3276 | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralbidaOLD 3277 | Obsolete version of ralbida 3276 as of 31-Oct-2024. (Contributed by NM, 6-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbida 3278 | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralbid 3279 | Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv 3184. (Contributed by NM, 27-Jun-1998.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbid 3280 | Formula-building rule for restricted existential quantifier (deduction form). For a version based on fewer axioms see rexbidv 3185. (Contributed by NM, 27-Jun-1998.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbidvALT 3281* | Alternate proof of rexbidv 3185, shorter but requires more axioms. (Contributed by NM, 20-Nov-1994.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbidvaALT 3282* | Alternate proof of rexbidva 3183, shorter but requires more axioms. (Contributed by NM, 9-Mar-1997.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rsp2 3283 | Restricted specialization, with two quantifiers. (Contributed by NM, 11-Feb-1997.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
Theorem | rsp2e 3284 | Restricted specialization. (Contributed by FL, 4-Jun-2012.) (Proof shortened by Wolf Lammen, 7-Jan-2020.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
Theorem | rspec2 3285 | Specialization rule for restricted quantification, with two quantifiers. (Contributed by NM, 20-Nov-1994.) |
⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | ||
Theorem | rspec3 3286 | Specialization rule for restricted quantification, with three quantifiers. (Contributed by NM, 20-Nov-1994.) |
⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) | ||
Theorem | r2alf 3287* | Double restricted universal quantification. For a version based on fewer axioms see r2al 3201. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2allem 3148. (Revised by Wolf Lammen, 9-Jan-2020.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | ||
Theorem | r2exf 3288* | Double restricted existential quantification. For a version based on fewer axioms see r2ex 3202. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2exlem 3149. (Revised by Wolf Lammen, 10-Jan-2020.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) | ||
Theorem | 2ralbida 3289* | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 24-Feb-2004.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | nfra1 3290 | The setvar 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | ||
Theorem | nfre1 3291 | The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 | ||
Theorem | ralcom4 3292* | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralcom4OLD 3293* | Obsolete version of ralcom4 3292 as of 31-Oct-2024. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexcom4 3294* | Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralcom 3295* | Commutation of restricted universal quantifiers. See ralcom2 3385 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3385 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexcom 3296* | Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexcomOLD 3297* | Obsolete version of rexcom 3296 as of 8-Dec-2024. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexcom4a 3298* | Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) | ||
Theorem | ralrot3 3299* | Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | ||
Theorem | ralcom13 3300* | Swap first and third restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.) (Proof shortened by Wolf Lammen, 2-Jan-2025.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |