![]() |
Metamath
Proof Explorer Theorem List (p. 33 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28351) |
![]() (28352-29876) |
![]() (29877-43667) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | reximdvva 3201* | Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by AV, 5-Jan-2022.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | reximddv2 3202* | Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) | ||
Theorem | r19.23t 3203 | Closed theorem form of r19.23 3204. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
⊢ (Ⅎ𝑥𝜓 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓))) | ||
Theorem | r19.23 3204 | Restricted quantifier version of 19.23 2197. See r19.23v 3205 for a version requiring fewer axioms. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) | ||
Theorem | r19.23v 3205* | Restricted quantifier version of 19.23v 1985. Version of r19.23 3204 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) | ||
Theorem | rexlimi 3206 | Restricted quantifier version of exlimi 2203. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) | ||
Theorem | rexlimd2 3207 | Version of rexlimd 3208 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimd 3208 | Deduction form of rexlimd 3208. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 14-Jan-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimiv 3209* | Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) | ||
Theorem | rexlimiva 3210* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) | ||
Theorem | rexlimivw 3211* | Weaker version of rexlimiv 3209. (Contributed by FL, 19-Sep-2011.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) | ||
Theorem | rexlimdv 3212* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimdva 3213* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 20-Jan-2007.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimdvaa 3214* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimdv3a 3215* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). Frequently-used variant of rexlimdv 3212. (Contributed by NM, 7-Jun-2015.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimdva2 3216* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimdvw 3217* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimddv 3218* | Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | rexlimivv 3219* | Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) | ||
Theorem | rexlimdvv 3220* | Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | ||
Theorem | rexlimdvva 3221* | Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | ||
Theorem | rexbii2 3222 | Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | rexbiia 3223 | Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rexbii 3224 | Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Dec-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | 2rexbii 3225 | Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | ||
Theorem | rexnal2 3226 | Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | ||
Theorem | rexnal3 3227 | Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑) | ||
Theorem | ralnex2 3228 | Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
Theorem | ralnex2OLD 3229 | Obsolete version of ralnex2 3228 as of 18-May-2023. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
Theorem | ralnex3 3230 | Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑) | ||
Theorem | ralnex3OLD 3231 | Obsolete version of ralnex3 3230 as of 18-May-2023. (Contributed by Thierry Arnoux, 12-Jul-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑) | ||
Theorem | rexbida 3232 | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbidv2 3233* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | rexbidva 3234* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Dec-2019.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbidvaALT 3235* | Alternate proof of rexbida 3232, shorter but requires more axioms. (Contributed by NM, 9-Mar-1997.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbid 3236 | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 27-Jun-1998.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbidv 3237* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 20-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbidvALT 3238* | Alternate proof of rexbidv 3237, shorter but requires more axioms. (Contributed by NM, 20-Nov-1994.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexeqbii 3239 | Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒) | ||
Theorem | 2rexbiia 3240* | Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | ||
Theorem | 2rexbidva 3241* | Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | 2rexbidv 3242* | Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | rexralbidv 3243* | Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | r2exlem 3244 | Lemma factoring out common proof steps in r2exf 3245 an r2ex 3246. Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 10-Jan-2020.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ¬ 𝜑)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) | ||
Theorem | r2exf 3245* | Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2exlem 3244. (Revised by Wolf Lammen, 10-Jan-2020.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) | ||
Theorem | r2ex 3246* | Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) | ||
Theorem | risset 3247* | Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | ||
Theorem | r19.12 3248* | Restricted quantifier version of 19.12 2303. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 19-May-2023.) |
⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | r19.12OLD 3249* | Obsolete version of r19.12 3248 as of 19-May-2023. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | r19.26 3250 | Restricted quantifier version of 19.26 1916. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.26-2 3251 | Restricted quantifier version of 19.26-2 1917. Version of r19.26 3250 with two quantifiers. (Contributed by NM, 10-Aug-2004.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | r19.26-3 3252 | Version of r19.26 3250 with three quantifiers. (Contributed by FL, 22-Nov-2010.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | r19.26m 3253 | Version of 19.26 1916 and r19.26 3250 with restricted quantifiers ranging over different classes. (Contributed by NM, 22-Feb-2004.) |
⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜓)) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | ralbi 3254 | Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi 1862. (Contributed by NM, 6-Oct-2003.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | ralbiim 3255 | Split a biconditional and distribute quantifier. Restricted quantifier version of albiim 1935. (Contributed by NM, 3-Jun-2012.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑))) | ||
Theorem | r19.27v 3256* | Restricted quantitifer version of one direction of 19.27 2213. (The other direction holds when 𝐴 is nonempty, see r19.27zv 4294.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | r19.28v 3257* | Restricted quantifier version of one direction of 19.28 2214. (The other direction holds when 𝐴 is nonempty, see r19.28zv 4289.) (Contributed by NM, 2-Apr-2004.) |
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | r19.29 3258 | Restricted quantifier version of 19.29 1920. See also r19.29r 3259. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | r19.29r 3259 | Restricted quantifier version of 19.29r 1921; variation of r19.29 3258. (Contributed by NM, 31-Aug-1999.) |
⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | ||
Theorem | r19.29imd 3260 | Theorem 19.29 of [Margaris] p. 90 with an implication in the hypothesis containing the generalization, deduction version. (Contributed by AV, 19-Jan-2019.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | ||
Theorem | r19.29af2 3261 | A commonly used pattern based on r19.29 3258. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | r19.29af 3262* | A commonly used pattern based on r19.29 3258. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | r19.29an 3263* | A commonly used pattern based on r19.29 3258. (Contributed by Thierry Arnoux, 29-Dec-2019.) |
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) | ||
Theorem | r19.29a 3264* | A commonly used pattern based on r19.29 3258. (Contributed by Thierry Arnoux, 22-Nov-2017.) |
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | 2r19.29 3265 | Theorem r19.29 3258 with two quantifiers. (Contributed by Rodolfo Medina, 25-Sep-2010.) |
⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓)) | ||
Theorem | r19.29d2r 3266 | Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) | ||
Theorem | r19.29vva 3267* | A commonly used pattern based on r19.29 3258, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) |
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | r19.30 3268 | Restricted quantifier version of 19.30 1928. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.32v 3269* | Restricted quantifier version of 19.32v 1983. (Contributed by NM, 25-Nov-2003.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.35 3270 | Restricted quantifier version of 19.35 1924. (Contributed by NM, 20-Sep-2003.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.36v 3271* | Restricted quantifier version of one direction of 19.36 2216. (The other direction holds iff 𝐴 is nonempty, see r19.36zv 4295.) (Contributed by NM, 22-Oct-2003.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)) | ||
Theorem | r19.37 3272 | Restricted quantifier version of one direction of 19.37 2218. (The other direction does not hold when 𝐴 is empty.) (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.37v 3273* | Restricted quantifier version of one direction of 19.37v 2040. (The other direction holds iff 𝐴 is nonempty, see r19.37zv 4290.) (Contributed by NM, 2-Apr-2004.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.40 3274 | Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.41v 3275* | Restricted quantifier version 19.41v 1992. Version of r19.41 3276 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) | ||
Theorem | r19.41 3276 | Restricted quantifier version of 19.41 2221. See r19.41v 3275 for a version with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 1-Nov-2010.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) | ||
Theorem | r19.41vv 3277* | Version of r19.41v 3275 with two quantifiers. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) | ||
Theorem | r19.42v 3278* | Restricted quantifier version of 19.42v 1996 (see also 19.42 2223). (Contributed by NM, 27-May-1998.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.43 3279 | Restricted quantifier version of 19.43 1929. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | r19.44v 3280* | One direction of a restricted quantifier version of 19.44 2224. The other direction holds when 𝐴 is nonempty, see r19.44zv 4292. (Contributed by NM, 2-Apr-2004.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓)) | ||
Theorem | r19.45v 3281* | Restricted quantifier version of one direction of 19.45 2225. The other direction holds when 𝐴 is nonempty, see r19.45zv 4291. (Contributed by NM, 2-Apr-2004.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | ralcomf 3282* | Commutation of restricted universal quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexcomf 3283* | Commutation of restricted existential quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralcom 3284* | Commutation of restricted universal quantifiers. See ralcom2 3290 for a version without disjoint variable condition on 𝑥, 𝑦. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexcom 3285* | Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralcom13 3286* | Swap first and third restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexcom13 3287* | Swap first and third restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralrot3 3288* | Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | ||
Theorem | rexrot4 3289* | Rotate four restricted existential quantifiers twice. (Contributed by NM, 8-Apr-2015.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
Theorem | ralcom2 3290* | Commutation of restricted universal quantifiers. Note that 𝑥 and 𝑦 need not be disjoint (this makes the proof longer). If 𝑥 and 𝑦 are disjoint, then one may use ralcom 3284. (Contributed by NM, 24-Nov-1994.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ralcom3 3291 | A commutation law for restricted universal quantifiers that swaps the domains of the restriction. (Contributed by NM, 22-Feb-2004.) |
⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | reean 3292* | Rearrange restricted existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | reeanv 3293* | Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | 3reeanv 3294* | Rearrange three restricted existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑧 ∈ 𝐶 𝜒)) | ||
Theorem | 2ralor 3295* | Distribute restricted universal quantification over "or". (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∨ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∨ ∀𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | nfreu1 3296 | The setvar 𝑥 is not free in ∃!𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) |
⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 | ||
Theorem | nfrmo1 3297 | The setvar 𝑥 is not free in ∃*𝑥 ∈ 𝐴𝜑. (Contributed by NM, 16-Jun-2017.) |
⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 | ||
Theorem | nfreud 3298 | Deduction version of nfreu 3300. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfrmod 3299 | Deduction version of nfrmo 3301. (Contributed by NM, 17-Jun-2017.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfreu 3300 | Bound-variable hypothesis builder for restricted unique existence. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |