MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ralbidv Structured version   Visualization version   GIF version

Theorem 3ralbidv 3221
Description: Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 20-Feb-2025.)
Hypothesis
Ref Expression
3ralbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3ralbidv (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem 3ralbidv
StepHypRef Expression
1 3ralbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21ralbidv 3177 . 2 (𝜑 → (∀𝑧𝐶 𝜓 ↔ ∀𝑧𝐶 𝜒))
322ralbidv 3218 1 (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ral 3062
This theorem is referenced by:  4ralbidv  3222
  Copyright terms: Public domain W3C validator