MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5ralimi Structured version   Visualization version   GIF version

Theorem 5ralimi 3132
Description: Inference quantifying both antecedent and consequent five times, with strong hypothesis. (Contributed by Scott Fenton, 5-Mar-2025.)
Hypothesis
Ref Expression
2ralimi.1 (𝜑𝜓)
Assertion
Ref Expression
5ralimi (∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑡𝐸 𝜑 → ∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑡𝐸 𝜓)

Proof of Theorem 5ralimi
StepHypRef Expression
1 2ralimi.1 . . 3 (𝜑𝜓)
21ralimi 3089 . 2 (∀𝑡𝐸 𝜑 → ∀𝑡𝐸 𝜓)
324ralimi 3131 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑡𝐸 𝜑 → ∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑡𝐸 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ral 3068
This theorem is referenced by:  6ralimi  3133
  Copyright terms: Public domain W3C validator